rate of photosynthesis
Recently Published Documents


TOTAL DOCUMENTS

284
(FIVE YEARS 35)

H-INDEX

37
(FIVE YEARS 2)

2022 ◽  
Vol 22 (1) ◽  
Author(s):  
Xiaoning Gao ◽  
Jinsong Dong ◽  
Fatemeh Rasouli ◽  
Ali Kiani Pouya ◽  
Ayesha T. Tahir ◽  
...  

Abstract Background Chilling temperature reduces the rate of photosynthesis in plants, which is more pronounced in association with phosphate (Pi) starvation. Previous studies showed that Pi resupply improves recovery of the rate of photosynthesis in plants much better under combination of dual stresses than in non-chilled samples. However, the underlying mechanism remains poorly understood. Results In this study, RNA-seq analysis showed the expression level of 41 photosynthetic genes in plant roots increased under phosphate starvation associated with 4 °C (-P 4 °C) compared to -P 23 °C. Moreover, iron uptake increased significantly in the stem cell niche (SCN) of wild type (WT) roots in -P 4 °C. In contrast, lower iron concentrations were found in SCN of aluminum activated malate transporter 1 (almt1) and its transcription factor, sensitive to protein rhizotoxicity 1 (stop1) mutants under -P 4 °C. The Fe content examined by ICP-MS analysis in -P 4 °C treated almt1 was 98.5 ng/µg, which was only 17% of that of seedlings grown under -P 23 °C. Average plastid number in almt1 root cells under -P 4 °C was less than -P 23 °C. Furthermore, stop1 and almt1 single mutants both exhibited increased primary root elongation than WT under combined stresses. In addition, dark treatment blocked the root elongation phenotype of stop1 and almt1. Conclusions Induction of photosynthetic gene expression and increased iron accumulation in roots is required for plant adjustment to chilling in association with phosphate starvation.


MAUSAM ◽  
2022 ◽  
Vol 46 (3) ◽  
pp. 303-306
Author(s):  
Y. R. KENJLE ◽  
M. C. VARSHNEYA ◽  
T. R. U. NAIDU

ABSTRACT. The diurnal variation of rate of photosynthesis (l') with photosynthetic photon flux density (PPFD) model of light response curves and the relationship between PPFD and P were studied for two postmonsoon (rabi) sorghum genotypes, viz.. M35- I and RSV-9R under field conditions at Pune. The half maximal values. i.e., PPFD level at which P=Pmax/2 obtained were 1251 and 937 umolm-2s-1 for M35-l and RSV.9R respectively. The potential rates of photosynthesis were 65,79 and 64.52  umolm-2S-1 whereas the observed maximum rates of photosynthesis were lower. 40.93 and 46.66 umolm-2s-1 in M35-1 and RSV-9R Respectively, due to effect of air temperatures under the field conditions, n1e maximum rate of photosynthesis determined from the model decreased with delay in the sowing of the crop. Correlation coefficients between PPFD and rate of photosynthesis were 0,794 and 0,708 for M35-1 and RSV-9R respectively. The PPFD received and rate of photosynthesis decreased significantly with delay in sorghum sowing.    


2022 ◽  
Vol 42 ◽  
pp. 01023
Author(s):  
Vladimir Kreslavski ◽  
Anatoly Ivanov ◽  
Alexander Shmarev ◽  
Alexandra Khudyakova ◽  
Anatoly Kosobryukhov

More and more attention is paid to the development of technologies using iron nanoparticles in agriculture. In this regard, the effect of treatment of wheat seeds with various concentrations of iron nanoparticles Fe3O4 and Fe2O3 on the accumulation of biomass, the rate of photosynthesis and respiration, as well as on photochemical activity and antioxidant balance was studied. The seeds were treated for 3 h, germinated for 2 days in Petri dishes, transplanted into sand and grown under light for 18 days without mineral nutrition until the third leaf appeared. At a Fe3O4 concentration of 200 mg L-1 a significant increase in the dry biomass of the second leaf by 45% and the rate of photosynthesis by 16% was observed. At a concentration of nanoparticles in the form of Fe2O3 of 200 and 500 mg L-1, an increase in the rate of photosynthesis in the second leaf was also observed, but not in the biomass of the leaves. The activity of photosystem 2, estimated from the Fv/Fm value, also increased in experiments with nanoiron. However, the activity of antioxidant enzymes, guaiacol-dependent peroxidase and superoxide dismutase, decreased. It is assumed that the acceleration of growth at an early stage of wheat development is associated with an increase in photosynthetic processes.


2021 ◽  
Vol 6 (6) ◽  
pp. 45-54
Author(s):  
S.V. Bobushkina ◽  

By comparing three nurseries in the Arkhangelsk region, a comparative analysis of some technological operations in the production of ball-rooted coniferous seedlings was carried out, similar problems were noted and solutions were proposed to increase production efficiency and reduce costs. Frame elements and attachments in greenhouses reduce the amount of light entering the seedlings by 40…45 %, which reduces the rate of photosynthesis. Therefore, it is recommended to rotate the cassettes according to their location in the greenhouse. To increase the illumination, the greenhouse covering should be promptly cleaned from residues and dirt. When planning and building greenhouses, it is necessary to exclude their shading by other infrastructure objects. Substrate for growing seedlings in containers should preferably be purchased from specialized companies and its composition should be controlled before sowing by chemical analysis. In order to increase the yield of seedlings per unit area, the scheme of 2 rotations should be used, while a prerequisite in the north is heating greenhouses in spring, as well as in summer during periods of cold snaps and frosts. Spruce seeds must be sown first, while pines follow second. In this case, both breeds will reach standard parameters by the beginning of the next growing season. To reduce the difference in the amount of liquid to the seedlings during irrigation and fertilization, which reaches 270 %, it is necessary to constantly control these processes, timely cleaning of filters, elimination of breakages, regulation of the amount of liquid coming to the seedlings by means of nozzles or rotation of cassettes. It is possible to accelerate the seed germination and the seedling growth by using stimulants — environmentally safe humic preparations. Soaking the spruce seeds in the solution of the «Ekorost» preparation helped to increase germination and germination energy up to 13 %. Irrigation with a solution of this preparation increased the yield of standard seedlings of spruce by 40,6 % and pine by 36,9 % compared with control.


2021 ◽  
Author(s):  
Michael Thieme ◽  
Arthur Brêchet ◽  
Yann Bourgeois ◽  
Bettina Keller ◽  
Etienne Bucher ◽  
...  

Plant genomes comprise a vast diversity of transposable elements (TEs) (Tenaillon et al. 2010)⁠. While their uncontrolled proliferation can have fatal consequences for their host, there is strong evidence for their importance in fueling genetic diversity and plant evolution (Baduel et al. 2021)⁠. However, the number of studies addressing the role of TEs in this process is limited. Here we show that the heat-induced burst of a low-copy TE increases phenotypic diversity and leads to the rapid emergence of more drought-resistant individuals of Arabidopsis thaliana. We exposed TE-high-copy-(hc)lines (Thieme et al. 2017)⁠ with up to ~8 fold increased copy numbers of the heat-responsive ONSEN-TE (AtCOPIA78) (Ito et al. 2011; Cavrak et al. 2014; Tittel-Elmer et al. 2010)⁠ in the wild type background to desiccation as a straightforward and highly relevant selection pressure. We found evidence for a drastic increase of drought resistance in five out of the 23 tested hc-lines and further pinpoint one of the causative mutations to an exonic ONSEN-insertion in the ribose-5-phosphate-isomerase 2 gene. This loss-of-function mutation resulted in a decreased rate of photosynthesis and water consumption. This is one of the rare examples (Esnault et al. 2019)⁠ experimentally demonstrating the adaptive potential of mobilized stress-responsive TEs in eukaryotes. Our results further shed light on the complex relationship between mobile elements and their hosts and substantiate the importance of TE-mediated loss-of-function mutations in stress adaptation, particularly with respect to global warming.


2021 ◽  
Author(s):  
◽  
Christopher Lynton Gibbons

<p>This study investigated the algal density and growth, photophysiology and contribution of algae to animal respiration requirements (CZAR), in the symbiosis between the sea anemone Anthopleura aureoradiata and its dinoflagellate symbionts (zooxanthellae) under field and laboratory conditions. A. aureoradiata was collected during summer and winter on sunny and cloudy days from a rocky shore and mudflat environment. Algal densities displayed a trend of being 2.6 and 1.7 times greater during summer than winter on the mudflat on a sunny and cloudy day respectively. Algal division was asynchronous under field conditions over a daily period, and was 2.1 and 1.3 times greater on the rocky shore and mudflat respectively, during winter than summer on sunny days. Under field conditions, the efficiency and maximum rate of photosynthesis (per cell and per association) as well as respiration rate, were all greater during summer than winter. Cloud cover resulted in a difference in a higher maximum rate of photosynthesis per cell on a sunny day than a cloudy day within summer at Kau Bay. Additionally, these photosynthetic parameters and respiration rate were all greater on the rocky shore than mudflat while the photosynthetic compensation irradiance was greater on the mudflat. The CZAR was greatest on the rocky shore during summer on a sunny day (151%) and was also > 100% on a cloudy day in summer at this same site (129%); on the mudflat the CZAR was greatest during summer on a sunny day (89%). The CZAR was measured to be zero during winter at both sites during winter on cloudy days. Additionally, under laboratory conditions A. aureoradiata was exposed to gradual (GTC) and rapid (RTC) temperature changes. While under GTC and RTC, the algal density did not vary, though higher temperatures led to an increase in algal division. Under both GTC and RTC, the photosynthetic efficiency, maximum photosynthetic rate (per cell and per association) and respiration rate all increased with temperature, however under GTC these parameters all decreased between 32.5 [degrees]C and 35 [degrees] C. Photosynthetic compensation irradiance increased with temperature under both GTC and RTC until 30 [degrees] C, after which respiration exceeded maximum photosynthesis, meaning that photosynthetic compensation did not occur. Furthermore, photosynthetic saturation irradiance increased with temperature and peaked at 15 [degrees] C before declining with temperature under both GTC and RTC. The CZAR under GTC increased with temperature until it peaked at 15 [degrees] C (128%), before decreasing to zero at 30 [degrees] C - 35 [degrees] C. Under RTC, the CZAR was zero for all temperatures except at 10 [degrees] C where it was 25.1%. A CZAR < 100% may suggest that the symbiosis between A. aureoradiata and its zooxanthellae is parasitic under most conditions and at most times of the year. Alternatively, there may be some benefit to the symbiosis due to a competitive advantage over other macro-invertebrate species as a result of carbon translocation from the symbiont providing extra support for reproduction and growth. This study also showed A. aureoradiata to have a wide temperature tolerance reflecting the fluctuating conditions of a variable temperate environment. The wide temperature tolerance of this species suggests that it will tolerate short term (50 - 100 years) increases in ocean temperatures however, the threat beyond this time frame with other factors such as ocean acidification remains to be determined.</p>


2021 ◽  
Author(s):  
◽  
Christopher Lynton Gibbons

<p>This study investigated the algal density and growth, photophysiology and contribution of algae to animal respiration requirements (CZAR), in the symbiosis between the sea anemone Anthopleura aureoradiata and its dinoflagellate symbionts (zooxanthellae) under field and laboratory conditions. A. aureoradiata was collected during summer and winter on sunny and cloudy days from a rocky shore and mudflat environment. Algal densities displayed a trend of being 2.6 and 1.7 times greater during summer than winter on the mudflat on a sunny and cloudy day respectively. Algal division was asynchronous under field conditions over a daily period, and was 2.1 and 1.3 times greater on the rocky shore and mudflat respectively, during winter than summer on sunny days. Under field conditions, the efficiency and maximum rate of photosynthesis (per cell and per association) as well as respiration rate, were all greater during summer than winter. Cloud cover resulted in a difference in a higher maximum rate of photosynthesis per cell on a sunny day than a cloudy day within summer at Kau Bay. Additionally, these photosynthetic parameters and respiration rate were all greater on the rocky shore than mudflat while the photosynthetic compensation irradiance was greater on the mudflat. The CZAR was greatest on the rocky shore during summer on a sunny day (151%) and was also > 100% on a cloudy day in summer at this same site (129%); on the mudflat the CZAR was greatest during summer on a sunny day (89%). The CZAR was measured to be zero during winter at both sites during winter on cloudy days. Additionally, under laboratory conditions A. aureoradiata was exposed to gradual (GTC) and rapid (RTC) temperature changes. While under GTC and RTC, the algal density did not vary, though higher temperatures led to an increase in algal division. Under both GTC and RTC, the photosynthetic efficiency, maximum photosynthetic rate (per cell and per association) and respiration rate all increased with temperature, however under GTC these parameters all decreased between 32.5 [degrees]C and 35 [degrees] C. Photosynthetic compensation irradiance increased with temperature under both GTC and RTC until 30 [degrees] C, after which respiration exceeded maximum photosynthesis, meaning that photosynthetic compensation did not occur. Furthermore, photosynthetic saturation irradiance increased with temperature and peaked at 15 [degrees] C before declining with temperature under both GTC and RTC. The CZAR under GTC increased with temperature until it peaked at 15 [degrees] C (128%), before decreasing to zero at 30 [degrees] C - 35 [degrees] C. Under RTC, the CZAR was zero for all temperatures except at 10 [degrees] C where it was 25.1%. A CZAR < 100% may suggest that the symbiosis between A. aureoradiata and its zooxanthellae is parasitic under most conditions and at most times of the year. Alternatively, there may be some benefit to the symbiosis due to a competitive advantage over other macro-invertebrate species as a result of carbon translocation from the symbiont providing extra support for reproduction and growth. This study also showed A. aureoradiata to have a wide temperature tolerance reflecting the fluctuating conditions of a variable temperate environment. The wide temperature tolerance of this species suggests that it will tolerate short term (50 - 100 years) increases in ocean temperatures however, the threat beyond this time frame with other factors such as ocean acidification remains to be determined.</p>


Horticulturae ◽  
2021 ◽  
Vol 7 (11) ◽  
pp. 424
Author(s):  
Will Wheeler ◽  
Brent Black ◽  
Bruce Bugbee

Cherry orchards are transitioning to high-density plantings and dwarfing rootstocks to maximize production, but the response of these rootstocks to drought stress is poorly characterized. We used a 16-container, automated lysimeter system to apply repeated water stress to ungrafted Krymsk® 5 and 6 rootstocks during two growing cycles. Drought stress was imposed by withholding irrigation until the daily transpiration rate of each tree was 25% and 30% of the unstressed rate during the first trial and second trial, respectively. After this point was reached, the root-zone water status was restored to field capacity. Whole-tree transpiration measurements were supplemented with leaf-level gas-exchange measurements. Krymsk® 6 had a higher rate of photosynthesis, more vigorous vegetative growth and less conservative stomatal regulation during incipient drought than Krymsk® 5. At harvest, carbon partitioning to roots was greater in Krymsk® 6 than Krymsk® 5. The conservative rate of water use in Krymsk® 5 could be a function of greater stomatal control or reduced carbon partitioning to roots, which thereby limited transpiration rates. Further studies are needed to confirm that these results are applicable to trees grown using a common grafted scion under field conditions.


2021 ◽  
Vol 6 (3) ◽  
pp. 65654
Author(s):  
Mohammad Agus Salim ◽  
Luluk Setyaningsih ◽  
Imam Wahyudi ◽  
Sri Wilarso Budi R

Iron (Fe) is a micro essential needed by plants in small amounts and can be toxic when available in large quantities. This study aimed to evaluate how Fe exposure affects the growth of C. callothyrsus and L. leucocephala seedlings. This study used a completely randomized design with factorial, where the first factor consisted of two levels of seedlings (C. calothyrsus and L. leucocephala), and the second factor consisted of Fe concentration which consisted of 8 levels (0, 0.25, 0.5, 0.75, 1, 1.25, 1.5, and 1.75 mM). The results showed that treatment of seedlings species and concentration of Fe was able to significantly affect the growth parameters (height, root length, root dry weight, shoots, and plant dry weight) of seedlings. The control treatment (without Fe) showed the highest growth response compared to those treated with Fe exposure and an increase in Fe concentration was able to reduce all growth parameters in both seedlings. The 0.5 mM Fe concentration reduced all growth parameters of C. calothyrsus drastically, while in L. leucocephala, the Fe 0.75 concentration was able to decrease all growth parameters drastically. The tolerance index of both seedlings decreased with increasing Fe concentration. The rate of photosynthesis did not show a significant difference between treatments, meanwhile, it had a significant effect on chlorophyll affect chlorophyll (a, b, and total chlorophyll) and carotenoid content. The highest Fe content in C. calothyrsus seedlings was at a concentration of 1.5 mM (4.40%), while in L. leucocephala seedlings, the highest Fe content was at 1.7 mM (2.87%). 


2021 ◽  
Vol 13 (19) ◽  
pp. 11017
Author(s):  
Kei-Jung Kwon ◽  
Hyuk-Joon Kwon ◽  
Yun-Ah Oh ◽  
Soo-Young Kim ◽  
Bong-Ju Park

In this study, we investigated the physiological responses and particulate matter (PM) abatement and adsorption of three plants: Ardisia crenata, Ardisia japonica, and Maesa japonica, to determine their effectiveness as indoor air purification. When compared to control (without plants), PM was significantly and rapidly decreased by all three plants. The reduction in PM varied by species, with A. crenata being the most effective, followed closely by A. japonica, and finally M. japonica. M. japonica showed the highest rate of photosynthesis and transpiration, generating the greatest decrease in CO2 and a large increase in relative humidity. We hypothesize that the increased relative humidity in the chamber acted in a manner similar to a chemical flocculant, increasing the weight of PM via combination with airborne water particles and the creation of larger PM aggregates, resulting in a faster sedimentation rate. A. crenata had a stomatal size of ~20 μm or larger, suggesting that the PM reduction observed in this species was the result of direct absorption. In the continuous fine dust exposure experiments, chlorophyll fluorescence values of all three species were in the normal range. In conclusion, all three species were found to be suitable indoor landscaping plants, effective at reducing indoor PM.


Sign in / Sign up

Export Citation Format

Share Document