Activation of bovine Factor X by the venom coagulant protein of Vipera russelli: Complex formation of the activation fragments

1974 ◽  
Vol 365 (1) ◽  
pp. 121-132 ◽  
Author(s):  
Barbara C. Furie ◽  
Bruce Furie ◽  
Arlan J. Gottlieb ◽  
William J. Williams
1978 ◽  
Vol 40 (02) ◽  
pp. 350-357
Author(s):  
Robert H Yue ◽  
Menard M Gertler

SummaryThe binding of Ca+2 to bovine factor X (molecular weight of 74,000) (Yue und Gertler 1977) was studied by the technique of rate dialysis and with the use of 45Ca+2. The binding data are consistent with a model of sequential mechanism. One mole of Ca+2 binds to the glycoprotein with a dissociation constant of 5.2 × 10-5 M and an additional 39 ± 4 moles of Ca+2 bind to this zymogen with a dissociation constant of 3.7 × 10-3M. The binding of the high affinity Ca+2 causes a functionally significant change in the zymogen, and (calcium) (factor X) complex is the real substrate in the activation process by the protease in Russell’s viper venom.


1981 ◽  
Vol 256 (7) ◽  
pp. 3433-3442 ◽  
Author(s):  
G. van Dieijen ◽  
G. Tans ◽  
J. Rosing ◽  
H.C. Hemker
Keyword(s):  
Factor X ◽  

1977 ◽  
Vol 252 (14) ◽  
pp. 4758-4761 ◽  
Author(s):  
S P Bajaj ◽  
R Byrne ◽  
T Nowak ◽  
F J Castellino
Keyword(s):  
Factor X ◽  

Blood ◽  
1983 ◽  
Vol 62 (2) ◽  
pp. 333-340 ◽  
Author(s):  
JW Jr Shands

Abstract The properties of mouse macrophage procoagulant induced by endotoxin in vitro were studied by the acceleration of clotting and by chromogenic assays using as substrates human plasma and bovine components, which are not activated by mouse tissue factor. Maximal macrophage procoagulant activity occurred when activated cells were lysed in culture supernatant fluids, suggesting the interaction of cellular and supernatant factors. This procoagulant was clearly able to activate bovine factor X. The procoagulant also appeared to have prothrombinase activity. However, additional experiments suggested that the bulk of this activity was due to the activation of factor X contaminating the prothrombin. The production of the procoagulant was inhibited by warfarin (5 microM). Its activity was inhibited by 1 mM diisopropylfluorophosphate and unaffected by iodoacetamide, indicating that the procoagulant is a serine protease. Macrophage culture supernatants contained factor-VII-like activity. Neither mouse tissue factor nor macrophage culture supernatants alone activated bovine factor X. The two combined served as an efficient factor-X activator. Active supernatant factor (factor-VII-like) was not produced by macrophages cultured in the presence of warfarin, while the production of the macrophage cellular factor was unaffected by the presence of warfarin. I conclude that exudate macrophages cultured in vitro make and secrete factor VII or a factor-VII-like substance into the culture supernatant. When activated macrophages are lysed in this supernatant, the interaction of a cellular factor (? tissue factor) and factor VII gives rise to a factor-X activator.


FEBS Letters ◽  
1984 ◽  
Vol 165 (1) ◽  
pp. 102-106 ◽  
Author(s):  
Teruko Sugo ◽  
Per Fernlund ◽  
Johan Stenflo
Keyword(s):  
Factor X ◽  

Blood ◽  
1983 ◽  
Vol 62 (2) ◽  
pp. 333-340
Author(s):  
JW Jr Shands

The properties of mouse macrophage procoagulant induced by endotoxin in vitro were studied by the acceleration of clotting and by chromogenic assays using as substrates human plasma and bovine components, which are not activated by mouse tissue factor. Maximal macrophage procoagulant activity occurred when activated cells were lysed in culture supernatant fluids, suggesting the interaction of cellular and supernatant factors. This procoagulant was clearly able to activate bovine factor X. The procoagulant also appeared to have prothrombinase activity. However, additional experiments suggested that the bulk of this activity was due to the activation of factor X contaminating the prothrombin. The production of the procoagulant was inhibited by warfarin (5 microM). Its activity was inhibited by 1 mM diisopropylfluorophosphate and unaffected by iodoacetamide, indicating that the procoagulant is a serine protease. Macrophage culture supernatants contained factor-VII-like activity. Neither mouse tissue factor nor macrophage culture supernatants alone activated bovine factor X. The two combined served as an efficient factor-X activator. Active supernatant factor (factor-VII-like) was not produced by macrophages cultured in the presence of warfarin, while the production of the macrophage cellular factor was unaffected by the presence of warfarin. I conclude that exudate macrophages cultured in vitro make and secrete factor VII or a factor-VII-like substance into the culture supernatant. When activated macrophages are lysed in this supernatant, the interaction of a cellular factor (? tissue factor) and factor VII gives rise to a factor-X activator.


Sign in / Sign up

Export Citation Format

Share Document