factor vii
Recently Published Documents


TOTAL DOCUMENTS

3715
(FIVE YEARS 277)

H-INDEX

98
(FIVE YEARS 5)

2022 ◽  
Vol 142 ◽  
pp. 95-104
Author(s):  
Olav Rogde Gramstad ◽  
Sai Priya Sarma Kandanur ◽  
Michael Etscheid ◽  
Erik Waage Nielsen ◽  
Sandip Mahadev Kanse

2022 ◽  
Author(s):  
Jeong-Yeon Kim ◽  
Dipankar Manna ◽  
Trygve B Leergaard ◽  
Sandip M Kanse

Factor VII activating protease (FSAP) is a circulating serine protease, and individuals with the Marburg I (MI) single nucleotide polymorphism (SNP), which results in an inactive enzyme, have an increased risk of stroke. The outcome of ischemic stroke is more marked in FSAP-deficient mice compared to their wild-type (WT) counterparts. Plasma FSAP levels are raised in patients as well as mice after stroke. In vitro, FSAP promotes fibrinolysis by cleavage of fibrinogen, activates protease-activated receptors and decreases the cellular cytotoxicity of histones. Since these are desirable properties in stroke treatment, we tested the effect of recombinant serine protease domain of FSAP (FSAP-SPD) on ischemic stroke in mice. A combination of tissue plasminogen activator (tPA) and FSAP-SPD enhanced clot lysis, improved microvascular perfusion and neurological outcome and reduced infarct volumes in a mouse model of thromboembolic stroke. In the tail bleeding model FSAP-SPD treatment provoked a faster clotting time indicating that it has a pro-coagulant effect that is described before. FSAP-SPD improved stroke outcome and diminished the negative effects of co-treatment with tPA in the transient middle cerebral artery occlusion model. The inactive MI-isoform of FSAP did not have any effects in either model. In mice with FSAP deficiency there were minor differences in the outcomes of stroke but the treatment with FSAP-SPD was equally effective. Thus, FSAP represents a promising novel therapeutic strategy in the treatment of ischemic stroke that requires further evaluation.


2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Shuai Li ◽  
Haibo Jia ◽  
Zhihang Liu ◽  
Nan Wang ◽  
Xiaochen Guo ◽  
...  

AbstractFibroblast growth factor-21 (FGF-21) performs a wide range of biological functions in organisms. Here, we report for the first time that FGF-21 suppresses thrombus formation with no notable risk of bleeding. Prophylactic and therapeutic administration of FGF-21 significantly improved the degree of vascular stenosis and reduced the thrombus area, volume and burden. We determined the antithrombotic mechanism of FGF-21, demonstrating that FGF-21 exhibits an anticoagulant effect by inhibiting the expression and activity of factor VII (FVII). FGF-21 exerts an antiplatelet effect by inhibiting platelet activation. FGF-21 enhances fibrinolysis by promoting tissue plasminogen activator (tPA) expression and activation, while inhibiting plasminogen activator inhibitor 1 (PAI-1) expression and activation. We further found that FGF-21 mediated the expression and activation of tPA and PAI-1 by regulating the ERK1/2 and TGF-β/Smad2 pathways, respectively. In addition, we found that FGF-21 inhibits the expression of inflammatory factors in thrombosis by regulating the NF-κB pathway.


2022 ◽  
Author(s):  
Sebastian Seidl ◽  
Nis V Nielsen ◽  
Michael Etscheid ◽  
Bengt-Erik Haug ◽  
Maria Stensland ◽  
...  

Increased Factor VII activating protease (FSAP) activity has a protective effect in diverse disease conditions as inferred from studies in FSAP-/- mice and humans deficient in FSAP activity due to a single nucleotide polymorphism. The activation of FSAP zymogen in plasma is mediated by extracellular histones that are released during tissue injury or inflammation or by positively charged surfaces. However, it is not clear if this activation mechanism is specific and amenable to manipulation. Using a phage display approach we have identified a peptide, NNKC9/41, that activates pro-FSAP in plasma. Other commonly found zymogens in the plasma were not activated. Binding studies with FSAP domain deletion mutants indicate that the N-terminus of FSAP is the key interaction site of this peptide. Blocking the contact pathway of coagulation did not influence pro-FSAP activation by the peptide. In a monoclonal antibody screen, we identified MA-FSAP-38C7 that prevented the activation of pro-FSAP by the peptide. This antibody bound to the LESLDP sequence (amino acids 30-35) in the N-terminus of FSAP. The plasma clotting time was shortened by NNKC9/41 and this was reversed by MA-FSAP-38C7 demonstrating the utility of this peptide. Identification of this peptide, and the corresponding interaction site, provides proof of principle that it is possible to activate a single protease zymogen in blood in a specific manner. Peptide NNKC/41 will be useful as a tool to delineate the molecular mechanism of activation of pro-FSAP in more detail, elucidate its biological role.


2022 ◽  
Vol 7 (1) ◽  
Author(s):  
Dai-Shi Tian ◽  
Chuan Qin ◽  
Luo-Qi Zhou ◽  
Sheng Yang ◽  
Man Chen ◽  
...  

AbstractRevascularization and angiogenesis, as substrates of sustained collateral circulation, play a crucial role in determining the severity and clinical outcome of acute ischemic stroke (AIS) due to large vessel occlusion (LVO). Developing an adjunct biomarker to help identify and monitor collateral status would aid stroke diagnosis and prognosis. To screen the potential biomarkers, proteomic analysis was performed in this study to identify those distinct plasma protein profiles in AIS due to LVO with different collateral status. Interestingly, we found that levels of Plasma Factor VII Activating Protease (FSAP) significantly increased in those AIS patients with poor collaterals, and were correlated with worse neurological outcome. Furtherly, both in vitro and in vivo models of ischemic stroke were used to explore pathological mechanisms of FSAP in endothelial dysfunction. We demonstrated that the FSAP inhibitor, high-molecular-weight hyaluronan (HMW-HA), enhanced the pro-angiogenic vascular factors, improved the integrity of brain blood barrier, and promoted newly formed cerebral microvessels in the ischemic penumbra, consequently improving neurological function. To elucidate the pathways that might contribute to revascularization during LVO, we applied transcriptomic analysis via unbiased RNA sequencing and showed that Wnt signaling was highly involved in FSAP mediated endothelial dysfunction. Notably, inhibition of Wnt5a largely reversed the protective effects from HMW-HA treatment, implying that FSAP might aggravate endothelial dysfunction and neurological deficits by regulating Wnt5a signaling. Therefore, FSAP may represent a potential biomarker for collateral status after LVO and a promising therapeutic target to be explored in the treatment of stroke.


Author(s):  
Aydan Akdeniz ◽  
Ayşegül Ünüvar ◽  
Muhlis Cem Ar ◽  
Esra Pekpak ◽  
Arzu Akyay ◽  
...  

Author(s):  
Ferruh Artunc ◽  
Bernhard N. Bohnert ◽  
Jonas C. Schneider ◽  
Tobias Staudner ◽  
Florian Sure ◽  
...  

AbstractProteolytic activation of the epithelial sodium channel (ENaC) by aberrantly filtered serine proteases is thought to contribute to renal sodium retention in nephrotic syndrome. However, the identity of the responsible proteases remains elusive. This study evaluated factor VII activating protease (FSAP) as a candidate in this context. We analyzed FSAP in the urine of patients with nephrotic syndrome and nephrotic mice and investigated its ability to activate human ENaC expressed in Xenopus laevis oocytes. Moreover, we studied sodium retention in FSAP-deficient mice (Habp2−/−) with experimental nephrotic syndrome induced by doxorubicin. In urine samples from nephrotic humans, high concentrations of FSAP were detected both as zymogen and in its active state. Recombinant serine protease domain of FSAP stimulated ENaC-mediated whole-cell currents in a time- and concentration-dependent manner. Mutating the putative prostasin cleavage site in γ-ENaC (γRKRK178AAAA) prevented channel stimulation by the serine protease domain of FSAP. In a mouse model for nephrotic syndrome, active FSAP was present in nephrotic urine of Habp2+/+ but not of Habp2−/− mice. However, Habp2−/− mice were not protected from sodium retention compared to nephrotic Habp2+/+ mice. Western blot analysis revealed that in nephrotic Habp2−/− mice, proteolytic cleavage of α- and γ-ENaC was similar to that in nephrotic Habp2+/+ animals. In conclusion, active FSAP is excreted in the urine of nephrotic patients and mice and activates ENaC in vitro involving the putative prostasin cleavage site of γ-ENaC. However, endogenous FSAP is not essential for sodium retention in nephrotic mice.


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Francesca Di Candia ◽  
Valeria Marchetti ◽  
Ferdinando Cirillo ◽  
Alessandro Di Minno ◽  
Carmen Rosano ◽  
...  

Abstract Background Bleeding anomalies have been reported in patients affected by Noonan syndrome. No study has been performed in patients with molecularly confirmed RASopathy. We aimed to characterize the frequency and types of bleeding disorders in patients with RASopathies and evaluate any significant association with laboratory findings. Patients and methods Forty-nine individuals (PTPN11, n = 27; SOS1, n = 7; RIT1, n = 3; SPRED1, n = 1; LZTR1, N = 3; RAF1, n = 2; BRAF, n = 4; MEK1, n = 1; MEK2, n = 1), and 49 age- and sex-matched controls were enrolled. The “Paediatric Bleeding Questionnaire Scoring Key” was administered to patients and families. Laboratory screening tests including clotting factors dosing, platelet count, Prothrombin Time and Partial Thromboplastin Time, were employed both in patients and controls to characterize the bleeding diathesis. A subgroup of 29/49 patients and 29/49 controls was also tested for platelet function. Results Regardless of the gene involved, pathological paediatric bleeding scores were recorded in 14/49 (28.5%) patients. Indeed, 7 were mutated in PTPN11, 3 in SOS1, 2 in RIT1, 1 in BRAF, and 1 in MEK1. Compared to patients with normal bleeding scores, those with pathologic bleeding score showed higher prevalence of splenomegaly (p = 0.006), prolonged aPTT (p = 0.04), lower levels of coagulation factor V (FV, p = 0.001), FVII (p = 0.003), FX (p = 0.0008) and FXIII (p = 0.002), higher vWAg (p = 0.04), and lower platelet sensitivity to Ristocetin (p = 0.001), arachidonic acid (AA) (p = 0.009) and collagen (p = 0.01). The presence of hematomas inversely correlated with factor V (p = 0.002), factor VII (p = 0.003), factor X (p = 0.002) and factor XIII (p = 0.004) levels, and directly correlated with platelet response to collagen (p = 0.02) and AA (p = 0.01). The presence of splenomegaly directly correlated with the presence of hematoma (p = 0.006), platelet response to Ristocetin (p = 0.04) and AA (p = 0.04), and inversely correlated with factor V levels (p = 0.03). Conclusions Patients with RASopathies and a bleeding tendency exhibit multiple laboratory abnormalities, including platelet-related disorders. Splenomegaly is frequently detected and might be a suggestive sign for qualitative platelet dysfunction. A comprehensive clinical assessment should be carried out at diagnosis, during the follow-up and before any surgical procedures. Since there is currently no consensus on management of bleeding complications, it is important that physicians closely monitor these patients.


Author(s):  
Ya‐nan Hu ◽  
Yu‐mian Gan ◽  
Yan‐ping Zhang ◽  
Dan‐dan Ruan ◽  
Yao‐bin Zhu ◽  
...  

Diagnostics ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 2071
Author(s):  
Ivan E. Wang ◽  
Grant Cooper ◽  
Shaker A. Mousa

With almost 4 million deaths worldwide from the COVID-19 pandemic, the efficient and accurate diagnosis and identification of COVID-19-related complications are more important than ever. Scales such as the pneumonia severity index, or CURB-65, help doctors determine who should be admitted to the hospital or the intensive care unit. To properly treat and manage admitted patients, standardized sampling protocols and methods are required for COVID-19 patients. Using PubMed, relevant articles since March 2020 on COVID-19 diagnosis and its complications were analyzed. Patients with COVID-19 had elevated D-dimer, thrombomodulin, and initial factor V elevation followed by decreased factor V and factor VII and elevated IL-6, lactate dehydrogenase, and c-reactive protein, which indicated coagulopathy and possible cytokine storm. Patients with hypertension, newly diagnosed diabetes, obesity, or advanced age were at increased risk for mortality. Elevated BUN, AST, and ALT in severe COVID-19 patients was associated with acute kidney injury or other organ damage. The gold standard for screening COVID-19 is reverse transcriptase polymerase chain reaction (RT-PCR) using sputum, oropharyngeal, or nasopharyngeal routes. However, due to the low turnover rate and limited testing capacity of RT-PCR, alternative diagnostic tools such as CT-scan and serological testing (IgM and IgG) can be considered in conjunction with symptom monitoring. Advancements in CRISPR technology have also allowed the use of alternative COVID-19 testing, but unfortunately, these technologies are still under FDA review and cannot be used in patients. Nonetheless, increased turnover rates and testing capacity allow for a bright future in COVID-19 diagnosis.


Sign in / Sign up

Export Citation Format

Share Document