Modification of human hemoglobin with polyethylene glycol: A new candidate for blood substitute

1980 ◽  
Vol 97 (3) ◽  
pp. 1076-1081 ◽  
Author(s):  
Katsumi Ajisaka ◽  
Yuji Iwashita
Author(s):  
R. S. Silkstone ◽  
G. Silkstone ◽  
J. A. Baath ◽  
B. Rajagopal ◽  
P. Nicholls ◽  
...  

2006 ◽  
Vol 282 (7) ◽  
pp. 4894-4907 ◽  
Author(s):  
Yiping Jia ◽  
Paul W. Buehler ◽  
Robert A. Boykins ◽  
Richard M. Venable ◽  
Abdu I. Alayash

Hydrogen peroxide (H2O2) triggers a redox cycle between ferric and ferryl hemoglobin (Hb) leading to the formation of a transient protein radical and a covalent hemeprotein cross-link. Addition of H2O2 to highly purified human hemoglobin (HbA0) induced structural changes that primarily resided within β subunits followed by the internalization of the heme moiety within α subunits. These modifications were observed when an equal molar concentration of H2O2 was added to HbA0 yet became more abundant with greater concentrations of H2O2. Mass spectrometric and amino acid analysis revealed for the first time that βCys-93 and βCys-112 were oxidized extensively and irreversibly to cysteic acid when HbA0 was treated with H2O2. Oxidation of further amino acids in HbA0 exclusive to the β-globin chain included modification of βTrp-15 to oxyindolyl and kynureninyl products as well as βMet-55 to methionine sulfoxide. These findings may therefore explain the premature collapse of the β subunits as a result of the H2O2 attack. Analysis of a tryptic digest of the main reversed phase-high pressure liquid chromatography fraction revealed two α-peptide fragments (α128 - α139) and a heme moiety with the loss of iron, cross-linked between αSer-138 and the porphyrin ring. The novel oxidative pathway of HbA0 modification detailed here may explain the diverse oxidative, toxic, and potentially immunogenic effects associated with the release of hemoglobin from red blood cells during hemolytic diseases and/or when cell-free Hb is used as a blood substitute.


1988 ◽  
Vol 17 (2) ◽  
pp. 143-154 ◽  
Author(s):  
S.M. Christensen ◽  
F. Medina ◽  
R.W. Winslow ◽  
S.M. Snell ◽  
A. Zegna ◽  
...  

2009 ◽  
Vol 14 (3) ◽  
pp. 123 ◽  
Author(s):  
O Goertz ◽  
MH Kirschner ◽  
H Lilienfein ◽  
P Babilas ◽  
HU Steinau ◽  
...  

1991 ◽  
Vol 101 (5) ◽  
pp. 1345-1353 ◽  
Author(s):  
H.Fletcher Starkes ◽  
Anand Tewari ◽  
Kimon Flokas ◽  
Jon C. Kosek ◽  
Daniel Brown ◽  
...  

1977 ◽  
Vol 23 (1) ◽  
pp. 69-75 ◽  
Author(s):  
T G Rosano ◽  
M A Kenny

Abstract We describe a radioimmunoassay that will measure both normal and above-normal concentrations of myoglobin in serum. Myoglobin isolated from human pectoralis muscle was purified by (NH4)2SO4 fractionation and Sephadex gel filtration and injected into rabbits to elicit antisera. Myoglobin was radiolabeled by an acylation with [125]-3-(4-hydroxyphenyl) propionic acid N-hydroxysuccinimide ester. With the purified myoglobin and antisera, we then developed a radioimmunoassy that involves simultaneous regent addition, a 3.5-h incubation at 37 degrees C, and separation of the antibody-bound fraction by precipitation with polyethylene glycol. Information is given on detection limit, precision, linearity, recovery, and specimen preservation. Cross-reactivity to human hemoglobin is negligible. Finally, we investigated the possible relationship between serum myoglobin concentration and muscle mass.


Sign in / Sign up

Export Citation Format

Share Document