Glutamate and synaptic depolarization of Purkinje cells evoked by parallel fibers and by climbing fibers

1979 ◽  
Vol 170 (2) ◽  
pp. 377-380 ◽  
Author(s):  
J.T. Hackett ◽  
S.-M. Hou ◽  
S.L. Cochran
1990 ◽  
Vol 153 (1) ◽  
pp. 289-303
Author(s):  
K. Kawamura ◽  
S. Murase ◽  
S. Yuasa

Reinnervation of host Purkinje cells by donor climbing fibers was observed in the following experiments. Medullary primordial tissue (from E14-E16) containing the inferior olive was grafted into a host rat cerebellum, in which the inferior olivary complex and climbing fibers had been destroyed by intraperitoneal injection of 3-acetylpyridine (3-AP). After 3 weeks, immature as well as mature types of climbing fiber terminals bearing packed round vesicles were found that had established synaptic contacts on dendritic spines of the host Purkinje cells. Quantitative analysis at the ultrastructural level has been carried out. The main results are as follows. (1) The number of preterminals that formed synaptic contacts with spines of the host Purkinje dendrites in the transplanted material increased by 3.4-fold compared to the control (3-AP-treated non-grafted material). (2) The number of mature climbing-type preterminals increased from 0.3-0.9% to 5% after grafting (cf. 22% in normal brain tissue), and the number of immature climbing-type preterminals also increased from 2–10% (control) to 20% after grafting. These changes were statistically significant (P less than 0.01). (3) The number of parallel-type preterminals increased from 13% (control) to 27% after grafting, which was also statistically significant (P less than 0.01). Thus, it appears that the donor climbing fibers grow and develop to find unoccupied spines on the host Purkinje dendrites and establish synaptic contacts, and also that the host parallel fibers may generate axonal sprouts to search their new targets and ultimately to form synaptic contacts with unoccupied spines. In the process of re-modeling the brain, competition for targets is likely to occur between the two kinds of axonal processes, i.e. the donor climbing fibers and the host parallel fibers.


1997 ◽  
Vol 273 (3) ◽  
pp. H1166-H1176 ◽  
Author(s):  
N. Akgoren ◽  
C. Mathiesen ◽  
I. Rubin ◽  
M. Lauritzen

The purpose of the present study was to examine mechanisms of activity-dependent changes of cerebral blood flow (CBF) in rat cerebellar cortex by laser-Doppler flowmetry, using two synaptic inputs that excite different regions of the same target cell and with different synaptic strength. The apical part of Purkinje cells was activated by electrical stimulation of parallel fibers, whereas the cell soma and the proximal part of the dendritic tree were activated by climbing fibers using harmaline (40 mg/kg ip) or electrical stimulation of the inferior olive. Glass microelectrodes were used for recordings of field potentials and single-unit activity of Purkinje cells. CBF increases evoked by parallel fibers were most pronounced in the upper cortical layers. In contrast, climbing fiber stimulation increased CBF in the entire cortex. Inhibition of nitric oxide (NO) synthase activity by NG-nitro-L-arginine (L-NNA) or guanylate cyclase activity by 1H-[1,2,4(oxadiazolo)4,3-a]quinoxaline-1-one did not affect basal or harmaline-induced Purkinje cell activity but attenuated harmaline- and parallel fiber-evoked CBF increases by approximately 40-50%. Application of 8-(p-sulfophenyl)theophylline and adenosine deaminase reduced the harmaline-evoked CBF increase without any effect on the parallel fiber-evoked CBF response. The results suggest that CBF increases elicited by activation of Purkinje cells are partially mediated by the NO-guanosine 3',5'-cyclic monophosphate system independent of the input function but that adenosine contributes as well when climbing fibers are activated. This is the first demonstration of variations of coupling as a function of postsynaptic activity in the same cell.


2013 ◽  
Vol 110 (10) ◽  
pp. 2257-2274 ◽  
Author(s):  
N. H. Barmack ◽  
V. Yakhnitsa

Cerebellar Purkinje cells are excited by two afferent pathways: climbing and mossy fibers. Climbing fibers evoke large “complex spikes” (CSs) that discharge at low frequencies. Mossy fibers synapse on granule cells whose parallel fibers excite Purkinje cells and may contribute to the genesis of “simple spikes” (SSs). Both afferent systems convey vestibular information to folia 9c–10. After making a unilateral labyrinthectomy (UL) in mice, we tested how the discharge of CSs and SSs was changed by the loss of primary vestibular afferent mossy fibers during sinusoidal roll tilt. We recorded from cells identified by juxtacellular neurobiotin labeling. The UL preferentially reduced vestibular modulation of CSs and SSs in folia 8–10 contralateral to the UL. The effects of a UL on Purkinje cell discharge were similar in folia 9c–10, to which vestibular primary afferents project, and in folia 8–9a, to which they do not project, suggesting that vestibular primary afferent mossy fibers were not responsible for the UL-induced alteration of SS discharge. UL also induced reduced vestibular modulation of stellate cell discharge contralateral to the UL. We attribute the decreased modulation to reduced vestibular modulation of climbing fibers. In summary, climbing fibers modulate CSs directly and SSs indirectly through activation of stellate cells. Whereas vestibular primary afferent mossy fibers cannot account for the modulated discharge of SSs or stellate cells, the nonspecific excitation of Purkinje cells by parallel fibers may set an operating point about which the discharges of SSs are sculpted by climbing fibers.


1976 ◽  
Vol 7 (6) ◽  
pp. 567-578 ◽  
Author(s):  
Francis Crepel ◽  
Jean Mariani ◽  
Nicole Delhaye-Bouchaud

2011 ◽  
Vol 71 ◽  
pp. e215
Author(s):  
Ryoichi Ichikawa ◽  
Miwako Yamasaki ◽  
Taisuke Miyazaki ◽  
Haruyuki Tatsumi ◽  
Masahiko Watanabe

Sign in / Sign up

Export Citation Format

Share Document