normal brain
Recently Published Documents


TOTAL DOCUMENTS

2245
(FIVE YEARS 921)

H-INDEX

103
(FIVE YEARS 13)

Author(s):  
Ahmad Yahya Dawod ◽  
Aniwat Phaphuangwittayakul ◽  
Salita Angkurawaranon

<span>Traumatic brain injuries are significant effects of disability and loss of life. Physicians employ computed tomography (CT) images to observe the trauma and measure its severity for diagnosis and treatment. Due to the overlap of hemorrhage and normal brain tissues, segmentation methods sometimes lead to false results. The study is more challenging to unitize the AI field to collect brain hemorrhage by involving patient datasets employing CT scans images. We propose a novel technique free-form object model for brain injury CT image segmentation based on superpixel image processing that uses CT to analyzing brain injuries, quite challenging to create a high outstanding simple linear iterative clustering (SLIC) method. The maintains a strategic distance of the segmentation image to reduced intensity boundaries. The segmentation image contains marked red hemorrhage to modify the free-form object model. The contour labelled by the red mark is the output from our free-form object model. We proposed a hybrid image segmentation approach based on the combined edge detection and dilation technique features. The approach diminishes computational costs, and the show accomplished 96.68% accuracy. The segmenting brain hemorrhage images are achieved in the clustered region to construct a free-form object model. The study also presents further directions on future research in this domain.</span>


2022 ◽  
Vol 12 ◽  
Author(s):  
Ailiang Miao ◽  
Yongwei Shi ◽  
Xiaoshan Wang ◽  
Jianqing Ge ◽  
Chuanyong Yu

Objectives:Anti-dipeptidyl–peptidase–like protein 6 (anti-DPPX) encephalitis an extremely rare type of immune-mediated encephalitis. This study aimed to analyze the electroclinical characteristics and prognosis of anti-DPPX encephalitis.Methods:Five patients (all male) with anti-DPPX encephalitis in East China from January 2016 to October 2021 was retrospective analyzed. Electroclinical features and outcomes were reviewed.Results:All five patients were male. The media age at disease onset was 32 years old with a range of 14–56 years. The main symptoms included psychiatric disturbances (2/5), amnesia (4/5), confusion (3/5), and seizures (3/5). Migrating myoclonus were identified in patient 4 with positive DPPX and contactin-associated protein-like 2 antibodies in blood. All of the patients had positive DPPX antibodies in serum. Only one of them had positive antibody in the cerebrospinal fluid. EEG showed diffuse slowing in two patients, but no epileptiform discharges were observed. Eighty percent (4/5) of the patients showed normal brain magnetic resonance imaging. After immunotherapy, improvement of neuropsychiatric symptoms from all of the patients was observed. Over a mean follow-up of 30.8 weeks, all of the patients had marked improvement in the modified Rankin Scale. To date, no tumors were not observed in any patients.Conclusions:Anti-DPPX encephalitis mainly presents as neuropsychiatric symptoms. Cooperation of DPPX antibodies and CASPR2 antibodies might have contributed to the migration of myoclonus in the patient 4. Prompt immunotherapy often results in improvement.


2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Jolanta Kunikowska ◽  
Rafał Czepczyński ◽  
Dariusz Pawlak ◽  
Henryk Koziara ◽  
Kacper Pełka ◽  
...  

AbstractGlutamate carboxypeptidase II (GCP), also known as prostate specific membrane antigen (PSMA) has been found to be expressed in glioma vasculature in in-vitro studies. GCP expression can be traced with the use of [68Ga]Ga-PSMA-11 PET/CT used routinely for prostate cancer imaging. The aim of this paper was to analyze GCP expression in the recurrent glial tumors in vivo. 34 patients (pts.) aged 44.5 ± 10.3 years with suspicion of recurrence of histologically confirmed glioma grade III (6 pts.) and grade IV (28 pts.) were included in the study. All patients underwent contrast-enhanced MR and [68Ga]Ga-PSMA-11 PET/CT. No radiopharmaceutical-related adverse events were noted. PET/CT was positive in all the areas suspected for recurrence at MR in all the patients. The recurrence was confirmed by histopathological examinations or follow-up imaging in all cases. The images showed a very low background activity of the normal brain. Median maximal standard uptake value (SUVmax) of the tumors was 6.5 (range 0.9–15.6) and mean standard uptake value (SUVmean) was 3.5 (range 0.9–7.5). Target-to-background (TBR) ratios varied between 15 and 1400 with a median of 152. Target-to-liver background ratios (TLR) ranged from 0.2 to 2.6, the median TLR was 1.3. No significant difference of the measured parameters was found between the subgroups according to the glioma grade. High GCP expression in the recurrent glioma was demonstrated in-vivo with the use of [68Ga]Ga-PSMA-11 PET/CT. As the treatment options in recurrent glioma are limited, this observation may open new therapeutic perspectives with the use of radiolabeled agents targeting the GCP.


2022 ◽  
Vol 12 ◽  
Author(s):  
Mia Levite ◽  
Hadassa Goldberg

Epilepsy affects ~50 million people. In ~30% of patients the etiology is unknown, and ~30% are unresponsive to anti-epileptic drugs. Intractable epilepsy often leads to multiple seizures daily or weekly, lasting for years, and accompanied by cognitive, behavioral, and psychiatric problems. This multidisciplinary scientific (not clinical) ‘Perspective’ article discusses Autoimmune Epilepsy from immunological, neurological and basic-science angles. The article includes summaries and novel discoveries, ideas, insights and recommendations. We summarize the characteristic features of the respective antigens, and the pathological activity in vitro and in animal models of autoimmune antibodies to: Glutamate/AMPA-GluR3, Glutamate/NMDA-NR1, Glutamate/NMDA-NR2, GAD-65, GABA-R, GLY-R, VGKC, LGI1, CASPR2, and β2 GP1, found in subpopulations of epilepsy patients. Glutamate receptor antibodies: AMPA-GluR3B peptide antibodies, seem so far as the most exclusive and pathogenic autoimmune antibodies in Autoimmune Epilepsy. They kill neural cells by three mechanisms: excitotoxicity, Reactive-Oxygen-Species, and complement-fixation, and induce and/or facilitate brain damage, seizures, and behavioral impairments. In this article we raise and discuss many more topics and new insights related to Autoimmune Epilepsy. 1. Few autoimmune antibodies tilt the balance between excitatory Glutamate and inhibitory GABA, thereby promoting neuropathology and epilepsy; 2. Many autoantigens are synaptic, and have extracellular domains. These features increase the likelihood of autoimmunity against them, and the ease with which autoimmune antibodies can reach and harm these self-proteins. 3. Several autoantigens have ‘frenetic character’- undergoing dynamic changes that can increase their antigenicity; 4. The mRNAs of the autoantigens are widely expressed in multiple organs outside the brain. If translated by default to proteins, broad spectrum detrimental autoimmunity is expected; 5. The autoimmunity can precede seizures, cause them, and be detrimental whether primary or epiphenomenon; 6. Some autoimmune antibodies induce, and associate with, cognitive, behavioral and psychiatric impairments; 7. There are evidences for epitope spreading in Autoimmune Epilepsy; 8. T cells have different ‘faces’ in the brain, and in Autoimmune Epilepsy: Normal T cells are needed for the healthy brain. Normal T cells are damaged by autoimmune antibodies to Glutamate/AMPA GluR3, which they express, and maybe by additional autoantibodies to: Dopamine-R, GABA-R, Ach-R, Serotonin-R, and Adrenergic-R, present in various neurological diseases (summarized herein), since T cells express all these Neurotransmitter receptors. However, autoimmune and/or cytotoxic T cells damage the brain; 9. The HLA molecules are important for normal brain function. The HLA haplotype can confer susceptibility or protection from Autoimmune Epilepsy; 10. There are several therapeutic strategies for Autoimmune Epilepsy.


2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Kosuke Nakajo ◽  
Takehiro Uda ◽  
Toshiyuki Kawashima ◽  
Yuzo Terakawa ◽  
Kenichi Ishibashi ◽  
...  

AbstractThis study aimed whether the uptake of amino tracer positron emission tomography (PET) can be used as an additional imaging biomarker to estimate the prognosis of glioma. Participants comprised 56 adult patients with newly diagnosed and untreated World Health Organization (WHO) grade II–IV astrocytic glioma who underwent surgical excision and were evaluated by 11C-methionine PET prior to the surgical excision at Osaka City University Hospital from July 2011 to March 2018. Clinical and imaging studies were retrospectively reviewed based on medical records at our institution. Preoperative Karnofsky Performance Status (KPS) only influenced progression-free survival (hazard ratio [HR] 0.20; 95% confidence interval [CI] 0.10–0.41, p < 0.0001), whereas histology (anaplastic astrocytoma: HR 5.30, 95% CI 1.23–22.8, p = 0.025; glioblastoma: HR 11.52, 95% CI 2.27–58.47, p = 0.0032), preoperative KPS ≥ 80 (HR 0.23, 95% CI 0.09–0.62, p = 0.004), maximum lesion-to-contralateral normal brain tissue (LN max) ≥ 4.03 (HR 0.24, 95% CI 0.08–0.71, p = 0.01), and isocitrate dehydrogenase (IDH) status (HR 14.06, 95% CI 1.81–109.2, p = 0.011) were factors influencing overall survival (OS) in multivariate Cox regression. OS was shorter in patients with LN max ≥ 4.03 (29.3 months) than in patients with LN max < 4.03 (not reached; p = 0.03). OS differed significantly between patients with IDH mutant/LN max < 4.03 and patients with IDH mutant/LN max ≥ 4.03. LN max using 11C-methionine PET may be used in prognostic markers for newly identified and untreated WHO grade II–IV astrocytic glioma.


2022 ◽  
Author(s):  
Jinyang Ma ◽  
Lei Wang ◽  
Youdong Zhou ◽  
Changtao Fu ◽  
Song Huang ◽  
...  

Abstract Backgroud: Discovering effective immune-related biomarkers is vital to ensure efficient immunotherapy for glioma patients. Integrin Alpha L(ITGAL), essential to inflammatory and immune responses, have not been studied in gliomas, systematically. Methods RNA‑seq data and corresponding clinical information of glioma patients were collected from The Cancer Genome Atlas (TCGA) and Chinese Glioma Genome Atlas (CGGA), and mRNA data of normal brain tissues were obtained in Genotype-Tissue Expression (GTEx) project. Wilcoxon test was performed to analyze the correlation of ITGAL expression and glioma subtypes. Univariate and multivariate cox proportional hazards regression, receiver operating characteristic (ROC) curves and Kaplan-Meier plots were used to evaluate the prognostic value of ITGAL in glioma. Functional enrichment analyses and immune infiltration analysis were performed to investigate the potential function in mediating the immune response in the tumor microenvironment. Finally, we evaluated the ability of ITGAL for predicting the efficacy of ICB treatment for patients. Results We found the up-regulation of ITGAL may predict a poor prognosis for glioma patients, the expression level increased with the increasing of WHO grade and 1p19q co-deletion status and IDH mutation status. The total methylation level and copy number variation of ITGAL were moderately correlated with its mRNA expression in LGG samples (P < 0.05). Furthermore, ITGAL was correlated with the immunosuppressive tumor microenvironment for the strong correlation with M2 macrophages and Tregs. Finally, GSEA showed the upregulation of ITGAL was mainly involved in the signal recognition and regulation between immune cells, and Toll-like receptor signaling pathway. Conclusion ITGAL is a novel tumor-related and immune-associated biomarker, which could predict the prognosis and effect of ICB therapy for glioma patients.


2022 ◽  
Author(s):  
Joachim André ◽  
Sami Barrit ◽  
Patrice Jissendi Tchofo

Abstract PurposeSynthetic MR provides quantitative multiparametric data about tissue properties in a fast single-acquisition. We compared synthetic and conventional image quality and investigated synthetic relaxometry of acute and chronic ischemic lesions to support its interest in stroke imaging. MethodsFor this pilot study, we prospectively acquired synthetic and conventional brain MR of 43 consecutive adult patients with suspected stroke. We studied a total of 136 lesions, of which 46 DWI-positive with restricted ADC (DWI+/rADC), 90 white matter T2/FLAIR hyperintensities (WMH), and 430 normal brain regions (NBR). We assessed image quality for lesion definition according to a 3-level score by two readers of different experiences. We compared relaxometry of lesions and regions of interest.Results Synthetic images were superior to their paired conventional images for lesion definition except for sFLAIR (sT1 or sPSIR vs. cT1 and sT2 vs. cT2 for DWI+/rADC and WMH definition; p-values <.001) with substantial to almost perfect inter-rater reliability (κ ranging from 0.711 to 0.932, p-values <.001). We found significant differences in relaxometry between lesions and NBR and between acute and chronic lesions (T1, T2, and PD of DWI+/rADC or WMH vs. mirror NBR; p-values <.001; T1 and PD of DWI+/rADC vs. WMH; p-values of 0.034 and 0.008).Conclusion Synthetic MR may contribute to stroke imaging by fast acquiring consistent relaxometry data and accessible derived images of interest for the study of ischemic lesions.


2022 ◽  
Vol 2022 ◽  
pp. 1-12
Author(s):  
Fangzhou Guo ◽  
Jun Yan ◽  
Guoyuan Ling ◽  
Hainan Chen ◽  
Qianrong Huang ◽  
...  

Lower-grade glioma (LGG) is a common type of central nervous system tumor. Due to its complicated pathogenesis, the choice and timing of adjuvant therapy after tumor treatment are controversial. This study explored and identified potential therapeutic targets for lower-grade. The bioinformatics method was employed to identify potential biomarkers and LGG molecular mechanisms. Firstly, we selected and downloaded GSE15824, GSE50161, and GSE86574 from the GEO database, which included 40 LGG tissue and 28 normal brain tissue samples. GEO and VENN software identified of 206 codifference expressed genes (DEGs). Secondly, we applied the DAVID online software to investigate the DEG biological function and KEGG pathway enrichment, as well as to build the protein interaction visualization network through Cytoscape and STRING website. Then, the MCODE plug is used in the analysis of 22 core genes. Thirdly, the 22 core genes were analyzed with UNCLA software, of which 18 genes were associated with a worse prognosis. Fourthly, GEPIA was used to analyze the 18 selected genes, and 14 genes were found to be a significantly different expression between LGGs and normal brain tumor samples. Fifthly, hierarchical gene clustering was used to examine the 14 important gene expression differences in different histologies, as well as analysis of the KEGG pathway. Five of these genes were shown to be abundant in the natural killer cell-mediated cytokines (NKCC) and phagosome pathways. The five key genes that may be affected by the immune microenvironment play a crucial role in LGG development.


Cancers ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 262
Author(s):  
Ntlotlang Mokgautsi ◽  
Yu-Cheng Kuo ◽  
Sung-Ling Tang ◽  
Feng-Cheng Liu ◽  
Shiang-Jiun Chen ◽  
...  

Current anticancer treatments are inefficient against glioblastoma multiforme (GBM), which remains one of the most aggressive and lethal cancers. Evidence has shown the presence of glioblastoma stem cells (GSCs), which are chemoradioresistant and associated with high invasive capabilities in normal brain tissues. Moreover, accumulating studies have indicated that radiotherapy contributes to abnormalities in cell cycle checkpoints, including the G1/S and S phases, which may potentially lead to resistance to radiation. Through computational simulations using bioinformatics, we identified several GBM oncogenes that are involved in regulating the cell cycle. Cyclin B1 (CCNB1) is one of the cell cycle-related genes that was found to be upregulated in GBM. Overexpression of CCNB1 was demonstrated to be associated with higher grades, proliferation, and metastasis of GBM. Additionally, increased expression levels of CCNB1 were reported to regulate activation of mitogen-activated protein kinase 7 (MAPK7) in the G2/M phase, which consequently modulates mitosis; additionally, in clinical settings, MAPK7 was demonstrated to promote resistance to temozolomide (TMZ) and poor patient survival. Therefore, MAPK7 is a potential novel drug target due to its dysregulation and association with TMZ resistance in GBM. Herein, we identified MAPK7/extracellular regulated kinase 5 (ERK5) genes as being overexpressed in GBM tumors compared to normal tissues. Moreover, our analysis revealed increased levels of the cell division control protein homolog (CDC42), a protein which is also involved in regulating the cell cycle through the G1 phase in GBM tissues. This therefore suggests crosstalk among CCNB1/CDC42/MAPK7/cluster of differentiation 44 (CD44) oncogenic signatures in GBM through the cell cycle. We further evaluated a newly synthesized small molecule, SJ10, as a potential target agent of the CCNB1/CDC42/MAPK7/CD44 genes through target prediction tools and found that SJ10 was indeed a target compound for the above-mentioned genes; in addition, it displayed inhibitory activities against these oncogenes as observed from molecular docking analysis.


Sign in / Sign up

Export Citation Format

Share Document