synaptic contacts
Recently Published Documents


TOTAL DOCUMENTS

243
(FIVE YEARS 14)

H-INDEX

46
(FIVE YEARS 1)

2021 ◽  
Vol 22 (24) ◽  
pp. 13186
Author(s):  
Jason Abbas Aramideh ◽  
Andres Vidal-Itriago ◽  
Marco Morsch ◽  
Manuel B. Graeber

Microglial cell processes form part of a subset of synaptic contacts that have been dubbed microglial tetra-partite or quad-partite synapses. Since tetrapartite may also refer to the presence of extracellular matrix components, we propose the more precise term microglial penta-partite synapse for synapses that show a microglial cell process in close physical proximity to neuronal and astrocytic synaptic constituents. Microglial cells are now recognised as key players in central nervous system (CNS) synaptic changes. When synaptic plasticity involving microglial penta-partite synapses occurs, microglia may utilise their cytokine arsenal to facilitate the generation of new synapses, eliminate those that are not needed anymore, or modify the molecular and structural properties of the remaining synaptic contacts. In addition, microglia–synapse contacts may develop de novo under pathological conditions. Microglial penta-partite synapses have received comparatively little attention as unique sites in the CNS where microglial cells, cytokines and other factors they release have a direct influence on the connections between neurons and their function. It concerns our understanding of the penta-partite synapse where the confusion created by the term “neuroinflammation” is most counterproductive. The mere presence of activated microglia or the release of their cytokines may occur independent of inflammation, and penta-partite synapses are not usually active in a neuroimmunological sense. Clarification of these details is the main purpose of this review, specifically highlighting the relationship between microglia, synapses, and the cytokines that can be released by microglial cells in health and disease.


2021 ◽  
Vol 28 (9) ◽  
pp. 277-290
Author(s):  
Tyler W. Dunn ◽  
Wayne S. Sossin

A more thorough description of the changes in synaptic strength underlying synaptic plasticity may be achieved with quantal resolution measurements at individual synaptic sites. Here, we demonstrate that by using a membrane targeted genetic calcium sensor, we can measure quantal synaptic events at the individual synaptic sites of Aplysia sensory neuron to motor neuron synaptic connections. These results show that synaptic strength is not evenly distributed between all contacts in these cultures, but dominated by multiquantal sites of synaptic contact, likely clusters of individual synaptic sites. Surprisingly, most synaptic contacts were not found opposite presynaptic varicosities, but instead at areas of pre- and postsynaptic contact with no visible thickening of membranes. The release probability, quantal size, and quantal content can be measured over days at individual synaptic contacts using this technique. Homosynaptic depression was accompanied by a reduction in release site probability, with no evidence of individual synaptic site silencing over the course of depression. This technique shows promise in being able to address outstanding questions in this system, including determining the synaptic changes that maintain long-term alterations in synaptic strength that underlie memory.


2021 ◽  
Vol 22 (11) ◽  
pp. 6111
Author(s):  
Greta Limoni

The establishment of neuronal circuits requires neurons to develop and maintain appropriate connections with cellular partners in and out the central nervous system. These phenomena include elaboration of dendritic arborization and formation of synaptic contacts, initially made in excess. Subsequently, refinement occurs, and pruning takes places both at axonal and synaptic level, defining a homeostatic balance maintained throughout the lifespan. All these events require genetic regulations which happens cell-autonomously and are strongly influenced by environmental factors. This review aims to discuss the involvement of guidance cues from the Semaphorin family.


2021 ◽  
pp. 0271678X2110022
Author(s):  
Ariel Diaz ◽  
Paola Merino ◽  
Patrick McCann ◽  
Manuel A Yepes ◽  
Laura G Quiceno ◽  
...  

Urokinase-type plasminogen activator (uPA) is a serine proteinase that catalyzes the generation of plasmin on the cell surface and activates cell signaling pathways that promote remodeling and repair. Neuronal cadherin (NCAD) is a transmembrane protein that in the mature brain mediates the formation of synaptic contacts in the II/III and V cortical layers. Our studies show that uPA is preferentially found in the II/III and V cortical laminae of the gyrencephalic cortex of the non-human primate. Furthermore, we found that in murine cerebral cortical neurons and induced pluripotent stem cell (iPSC)-derived neurons prepared from healthy human donors, most of this uPA is associated with pre-synaptic vesicles. Our in vivo experiments revealed that in both, the gyrencephalic cortex of the non-human primate and the lissecephalic murine brain, cerebral ischemia decreases the number of intact synaptic contacts and the expression of uPA and NCAD in a band of tissue surrounding the necrotic core. Additionally, our in vitro data show that uPA induces the synthesis of NCAD in cerebral cortical neurons, and in line with these observations, intravenous treatment with recombinant uPA three hours after the onset of cerebral ischemia induces NCAD-mediated repair of synaptic contacts in the area surrounding the necrotic core.


2021 ◽  
Author(s):  
Tyler W Dunn ◽  
Wayne S Sossin

AbstractThe ability to monitor changes in strength at individual synaptic contacts is required to test the hypothesis that specialized synapses maintain changes in synaptic strength that underlie memory. Measuring excitatory post-synaptic calcium transients through calcium permeable AMPA receptors is one way to monitor synaptic strength at individual synaptic contacts. Using a membrane targeted genetic calcium sensor, we demonstrate that one can measure synaptic events at individual synaptic contacts in Aplysia sensory-motor neuron synapses. These results show that synaptic strength is not evenly distributed between all contacts in these cultures, but dominated by multiquantal sites of synaptic contact. The probability, quantal size and quantal content can be measured over days at individual synaptic contacts using this technique. Surprisingly, most synaptic contacts were not found opposite presynaptic varicosities, but instead at areas of pre- and post-synaptic contact with no visible thickening of membranes. This technique shows promise in being able to address whether specialized synapses maintain synaptic strength underlying memory.


Author(s):  
anjali sharma ◽  
Bhavya Sootha

The overproduction of neural elements, including neurons, axons, and synapses, is a tool commonly used in developmental neuroscience to reconstruct nervous systems. This generation and maturation of these neuronal synapses are accompanied by a so-called "pruning" process, marking a peak in synapse elimination (synaptic pruning) which is a final stage in the development of the human brain. Analogous to cleaning up of the brain, synaptic pruning eliminates extra neurons and synaptic connections to increase the efficiency of neuronal transmissions along with eliminating weaker synaptic contacts while stronger connections are kept and strengthened. Brain plasticity is a result of this neural "pruning"; neurons that are more frequently activated are preserved, while those forming weaker synaptic contacts are "trimmed away." Research in zebrafish and rat models have shown pruning occurring in about 80 per cent of the synapses, barring the largest ones. These larger synapses were found to be associated with the most stable and crucial memories residing in the brain. Recent studies indicate that glial cells(microglia and astrocytes) play a critical role in synaptic pruning, mediated by a set of signalling pathways between neurons and glia, identifying and removing unnecessary neural connections. This loss of redundant pathways may explain the arduous task of recovering from a traumatic brain injury; eliminating synaptic redundancies diminishes our ability to develop alternative pathways to bypass the damaged regions. Brain imaging and postmortem anatomical studies have pointed to insufficient or excessive synaptic pruning that may underlie several neurodevelopmental disorders, including autism, schizophrenia, and epilepsy. In this review, we explore the brains innate delete button and present current data on the mechanisms of glial-cell-dependent synaptic pruning by outlining their potential contribution to neurodevelopmental disorders.


2020 ◽  
Author(s):  
Jun Tomita ◽  
Gosuke Ban ◽  
Yoshiaki S. Kato ◽  
Kazuhiko Kume

AbstractThe central complex is one of the major brain regions that control sleep in Drosophila, but the circuitry details of sleep regulation have yet to be elucidated. Here, we show a novel sleep-regulating neuronal circuit in the protocerebral bridge (PB) of the central complex. Activation of the PB interneurons labeled by the R59E08-Gal4 and the PB columnar neurons in the R52B10-Gal4 promoted sleep and wakefulness, respectively. A targeted GFP reconstitution across synaptic partners (t-GRASP) analysis demonstrated synaptic contacts between these two groups of sleep-regulating PB neurons. Furthermore, we found that activation of a pair of dopaminergic (DA) neurons projecting to the PB (T1 DA neurons) decreased sleep. The wake-promoting T1 DA neurons and the sleep-promoting PB interneurons formed close associations. Dopamine 2-like receptor (Dop2R) knockdown in the sleep-promoting PB interneurons increased sleep. These results indicated that the neuronal circuit in the PB regulated by dopamine signaling mediates sleep-wakefulness.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Christine L. Remmers ◽  
Charlotte C. M. Castillon ◽  
John N. Armstrong ◽  
Anis Contractor

Abstract GABA is a key regulator of adult-born dentate granule cell (abDGC) maturation so mapping the functional connectivity between abDGCs and local interneurons is required to understand their development and integration into the hippocampal circuit. We recorded from birthdated abDGCs in mice and photoactivated parvalbumin (PV) and somatostatin (SST) interneurons to map the timing and strength of inputs to abDGCs during the first 4 weeks after differentiation. abDGCs received input from PV interneurons in the first week, but SST inputs were not detected until the second week. Analysis of desynchronized quantal events established that the number of GABAergic synapses onto abDGCs increased with maturation, whereas individual synaptic strength was constant. Voluntary wheel running in mice scaled the GABAergic input to abDGCs by increasing the number of synaptic contacts from both interneuron types. This demonstrates that GABAergic innervation to abDGCs develops during a prolonged post-mitotic period and running scales both SST and PV synaptic afferents.


Author(s):  
Christopher L. Barnes ◽  
Daniel Bonnéry ◽  
Albert Cardona

AbstractThe pattern of synaptic connections among neurons defines the circuit structure, which constrains the computations that a circuit can perform. The strength of synaptic connections is costly to measure yet important for accurate circuit modeling. It has been shown that synaptic surface area correlates with synaptic strength, yet in the emerging field of connectomics, most studies rely instead on the counts of synaptic contacts between two neurons. Here we quantified the relationship between synaptic count and synaptic area as measured from volume electron microscopy of the larval Drosophila central nervous system. We found that the total synaptic surface area, summed across all synaptic contacts from one presynaptic neuron to a postsynaptic one, can be accurately predicted solely from the number of synaptic contacts, for a variety of neurotransmitters. Our findings support the use of synaptic counts for approximating synaptic strength when modeling neural circuits.


Sign in / Sign up

Export Citation Format

Share Document