A method for visualizing flow and measuring velocity vectors in three-dimensional flow patterns

1964 ◽  
Vol 19 (5) ◽  
pp. 367 ◽  
Author(s):  
J.K. Nieuwenhuizen
AIChE Journal ◽  
2001 ◽  
Vol 47 (2) ◽  
pp. 388-400 ◽  
Author(s):  
Geraldine J. Heynderickx ◽  
Arno J. M. Oprins ◽  
Guy B. Marin ◽  
Erik Dick

1968 ◽  
Vol 90 (3) ◽  
pp. 237-243 ◽  
Author(s):  
Y. Senoo ◽  
M. Yamaguchi ◽  
M. Nishi

In order to visualize the three-dimensional flow in the impeller and the vaneless diffuser of a centrifugal compressor, water is used as the working fluid and streak lines of colored water are photographed and examined. The test is made at an extremely low speed so that streak lines do not diffuse due to turbulent mixing. The streak lines clearly demonstrate several types of secondary flow, some of which agree with what have been speculated to exist in actual compressors. Most of observed secondary flow patterns are qualitatively understandable with existing theories.


Author(s):  
Takahiro Yasuda ◽  
Atsushi Okajima ◽  
Minoru Moriyoshi

Three-dimensional flow structures around and fluiddynamic forces acting on a rectangular cylinder in oscillatory flow were investigated by numerical simulation using finite volume method. The computations were carried out for three kinds of cross-sections with width/height ratio (d/H) d/H = 0.6, 1.0 and 2.0 and for the amplitude of oscillating flow in the range of 2.5 ≤ the Keulegan-Carpenter number (KC) ≤ 25, the Stokes number (β) = 95. The calculated flow patterns and the drag and inertia force coefficients of Morison equation acting on the cylinder were compared with the experimental ones using a U-tube water tank. In this paper, we note how the KC number and the width/height ratio of the cylinders affect the unsteady and three-dimensional flow structures such as the “longitudinal vortices” and “transverse street” which formed in the case of a circular cylinder fixed in oscillatory flow, and how the CD and the CM values of Morison coefficients change corresponding to the change of the behavior of the flow patterns. Furthermore the relationship between spanwise correlation coefficient of the transverse force R(x3), where x3 is the spanwise position from the bottom of the cylinder, and three-dimensional vortex structures were investigated.


Sign in / Sign up

Export Citation Format

Share Document