water models
Recently Published Documents


TOTAL DOCUMENTS

496
(FIVE YEARS 105)

H-INDEX

54
(FIVE YEARS 6)

2021 ◽  
Author(s):  
Kara K. Grotz ◽  
Nadine Schwierz

Magnesium plays a vital role in a large variety of biological processes. To model such processes by molecular dynamics simulations, researchers rely on accurate force field parameters for Mg2+ and water. OPC is one of the most promising water models yielding an improved description of biomolecules in water. The aim of this work is to provide force field parameters for Mg2+ that lead to accurate simulation results in combination with OPC water. Using twelve different Mg2+ parameter sets, that were previously optimized with different water models, we systematically assess the transferability to OPC based on a large variety of experimental properties. The results show that the Mg2+ parameters for SPC/E are transferable to OPC and closely reproduce the experimental solvation free energy, radius of the first hydration shell, coordination number, activity derivative, and binding affinity toward the phosphate oxygen on RNA. Two optimal parameter sets are presented: MicroMg yields water exchange in OPC on the microsecond timescale in agreement with experiments. NanoMg yields accelerated exchange on the nanosecond timescale and facilitates the direct observation of ion binding events for enhanced sampling purposes.


Author(s):  
Miguel Angel Gonzalez ◽  
Alberto Zaragoza ◽  
Charlotte Lynch ◽  
Mark S.P. Sansom ◽  
Chantal Valeriani

2021 ◽  
Author(s):  
Carmelo Tempra ◽  
O.H. Samuli Ollila ◽  
Matti Javanainen

Lipid monolayers provide our lungs and eyes their functionality, and serve as proxy systems in biomembrane research. Therefore, lipid monolayers have been studied intensively also using molecular dynamics simulations, which are able to probe their lateral structure and interactions with, e.g., pharmaceuticals or nanoparticles. However, such simulations have struggled in describing the forces at the air–water interface. Particularly the surface tension of water and long-range van der Waals interactions have been considered critical, but their importance in monolayer simulations has been evaluated only separately. Here we combine the recent C36/LJ-PME lipid force field that in- cludes long-range van der Waals forces with water models that reproduce experimental surface tensions to elucidate the importance of these contributions in monolayer simulations. Our results suggest that a water model with correct surface tension is necessary to reproduce experimental surface pressure–area isotherms and monolayer phase behavior, while standard cutoff-based CHARMM36 lipid model with the 4-point OPC water model still provides the best agreement with experiments. Our results emphasize the importance of using high quality water models in applications and parameter development in molecular dynamics simulations of biomolecules.


Author(s):  
Ray A. Matsumoto ◽  
Matthew W. Thompson ◽  
Van Quan Vuong ◽  
Weiwei Zhang ◽  
Yuya Shinohara ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document