water tank
Recently Published Documents


TOTAL DOCUMENTS

1692
(FIVE YEARS 569)

H-INDEX

38
(FIVE YEARS 6)

2022 ◽  
Vol 934 ◽  
Author(s):  
G.-Y. Yuan ◽  
B.-Y. Ni ◽  
Q.-G. Wu ◽  
Y.-Z. Xue ◽  
D.-F. Han

Ice breaking has become one of the main problems faced by ships and other equipment operating in an ice-covered water region. New methods are always being pursued and studied to improve ice-breaking capabilities and efficiencies. Based on the strong damage capability, a high-speed water jet impact is proposed to be used to break an ice plate in contact with water. A series of experiments of water jet impacting ice were performed in a transparent water tank, where the water jets at tens of metres per second were generated by a home-made device and circular ice plates of various thicknesses and scales were produced in a cold room. The entire evolution of the water jet and ice was recorded by two high-speed cameras from the top and front views simultaneously. The focus was the responses of the ice plate, such as crack development and breakup, under the high-speed water jet loads, which involved compressible pressure ${P_1}$ and incompressible pressure ${P_2}$ . According to the main cause and crack development sequence, it was found that the damage of the ice could be roughly divided into five patterns. On this basis, the effects of water jet strength, ice thickness, ice plate size and boundary conditions were also investigated. Experiments validated the ice-breaking capability of the high-speed water jet, which could be a new auxiliary ice-breaking method in the future.


2022 ◽  
Vol 9 ◽  
Author(s):  
Judith Besuglow ◽  
Thomas Tessonnier ◽  
Benedikt Kopp ◽  
Stewart Mein ◽  
Andrea Mairani

To start clinical trials with the first clinical treatment planning system supporting raster-scanned helium ion therapy, a comprehensive database of beam characteristics and parameters was required for treatment room-specific beam physics modeling at the Heidelberg Ion-Beam Therapy Center (HIT). At six different positions in the air gap along the beam axis, lateral beam profiles were systematically measured for 14 initial beam energies covering the full range of available energies at HIT. The 2D-array of liquid-filled ionization chambers OCTAVIUS from PTW was irradiated by a pencil beam focused at the central axis. With a full geometric representation of HIT’s monitoring chambers and beamline elements in FLUKA, our Monte Carlo beam model matches the measured lateral beam profiles. A second set of measurements with the detector placed in a water tank was used to validate the adjustments of the initial beam parameters assumed in the FLUKA simulation. With a deviation between simulated and measured profiles below ±0.8 mm for all investigated beam energies, the simulated profiles build part of the database for the first clinical treatment planning system for helium ions. The evolution of beamwidth was also compared to similar simulations of the clinically available proton and carbon beam. This allows a choice of treatment modality based on quantitative estimates of the physical beam properties. Finally, we investigated the influence of beamwidth variation on patient treatment plans in order to estimate the relevance and necessary precision limits for lateral beam width models.


Energy ◽  
2022 ◽  
Vol 239 ◽  
pp. 122103
Author(s):  
Haoran Li ◽  
Juan Hou ◽  
Zhiyong Tian ◽  
Tianzhen Hong ◽  
Natasa Nord ◽  
...  

Energy ◽  
2022 ◽  
Vol 239 ◽  
pp. 122241
Author(s):  
Piotr Dzierwa ◽  
Jan Taler ◽  
Patryk Peret ◽  
Dawid Taler ◽  
Marcin Trojan
Keyword(s):  

Automatica ◽  
2022 ◽  
Vol 135 ◽  
pp. 109999
Author(s):  
Thomas Berger ◽  
Marc Puche ◽  
Felix L. Schwenninger
Keyword(s):  

2022 ◽  
Vol 10 (1) ◽  
pp. 1-14
Author(s):  
M. F. Zairul Fuaad ◽  
N. Razali ◽  
H. Hishamuddin ◽  
A. Jedi

2022 ◽  
Vol 2160 (1) ◽  
pp. 012034
Author(s):  
Haijun Zhou

Abstract The virtualization of the Festo process control teaching platform and the implementation process of extending it with real industry applications are introduced. Taking the heating process of the water tank as an example, the model extraction method of the real object is analyzed in detail, and the model identification problem of the low-order linear control object is solved. Through the introduction of the creation process of the object model on the virtual platform, a feasible way is pointed out for similar applications. On this basis, it is proposed to integrate the teaching platform with the specific industrial industry in the virtualized environment, broaden the breadth of process control teaching, and point out new ideas for building a teaching profession with industry support.


Author(s):  
Jeisell Marisol Cabrera-Chairez ◽  
Néstor Manuel Ortíz-Rodríguez ◽  
Rodrigo Cervando Villegas-Martínez ◽  
Juan Manuel García-González

One of the current problems is the use of energy obtained from fossil fuels, especially due to the emission of greenhouse gases. An option to replace fossil fuels is the use of alternative energies such as solar or wind energy. The objective of this work is to carry out a thermal and energy analysis of an indirect air heating system that receives energy through solar collectors that operate with water as the thermal fluid used in a food dehydration system, in order to know the efficiency of the system and therefore, make improvements to the circuit, in addition to the characterization of the water storage tank of the system, obtain the amount of energy that can be provided and the behavior of temperatures at different operating flows. According to the methodology, the temperature profile was obtained inside the hot water tank in two modes of operation (heating and energy extraction) reaching temperatures of 50 to 70 ° C, where the optimum temperature for drying is found and in turn reaching an efficiency 84%, compared to a conventional drying system that uses LP gas.


2021 ◽  
Vol 23 (4) ◽  
pp. 315-318
Author(s):  
Ajeevan Gautam ◽  
Rajib Chaulagain ◽  
Deepesh Dhungel

The lungs are the organs of respiration which are situated on either side of the heart and other mediastinal contents in its pleural cavity. A fresh lung is spongy, can float in water and crepitates when handled. Lungs are important with respect to its blood circulation. The lungs are divided by fissures into lobes which facilitate movements of lobes in relation to one another. The hilum of each lung is its gateway. In the present study, we aim to assess the morphological variations of human cadaveric lungs at Chitwan Medical College (CMC). An observational study was conducted at dissection hall of anatomy department at Chitwan Medical College from September 2019 to October 2020 after taking ethical approval form Institutional Review Committee of CMC. All the intact 70 lungs present in the department were studied. Photographs of the intact lungs were taken from different surface. The lungs were porus, highly elastic and spongy in texture. On keeping lungs to water tank it got floated. We found 34(80.96%) of the studied specimen of right side had horizontal fissure present in it. The remaining 8 (19.04%) specimens did not have horizontal fissures, while 3 (5.88%) specimens had incomplete fissures. The oblique fissure was not present in 2 (2.38%) of the study specimens. The left side of the study specimen has a variance of 1(4.16%). When the hilum right lung was examined, 40 (95.23%) of the structure had the usual organization pattern. In the left lung, the usual pattern of organization was 21(75%). The differences are thought to be present in the lung’s fissure and hilum. The current study’s findings are therapeutically important. The findings could prove beneficial to cardiovascular and thoracic surgeons.


Energies ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 206
Author(s):  
Mingzhen Wang ◽  
Eric Hu ◽  
Lei Chen

Lowering the condensing temperature of the Refrigeration and Air-conditioning (RAC) system has been proven to effectively increase the system’s Coefficient of Performance (COP). This paper revolves around evaluating the energy-saving generated by applying a Thermal Diode Tank (TDT) in the RAC systems. The TDT is a novel invention, which is an insulated water tank equipped with gravity heat pipes. If the TDT was placed outdoors overnight, its inside water would theoretically be at the minimum ambient temperature of the previous night. When the TDT water is used to cool the condenser of RAC systems that operate during the daytime, a higher COP of this TDT assisted RAC (TDT-RAC) system could be achieved compared with the baseline system. In this study, a steady-state performance simulation model for TDT-RAC cycles has been developed. The model reveals that the COP of the TDT-RAC cycle can be improved by 10~59% over the baseline cycle depending on the compressor types. The TDT-RAC cycle with a variable speed compressor can save more energy than that with a fixed speed compressor. In addition, TDT-RAC cycles can save more energy with a higher day/night ambient temperature difference. There is a threshold tank size for a given TDT-RAC cycle to save energy, and the energy-saving can be improved by enlarging the tank size. A desk-top case study based on real weather data for Adelaide in January 2021 shows that 9~40% energy could be saved by TDT-RAC systems every summer day on average.


Sign in / Sign up

Export Citation Format

Share Document