scholarly journals Integer programming formulation of combinatorial optimization problems

1976 ◽  
Vol 16 (1) ◽  
pp. 39-52 ◽  
Author(s):  
Toshimde Ibaraki
2013 ◽  
Author(s):  
Θεόδωρος Γκεβεζές

Το Shortest Superstring Problem (SSP) είναι ένα πρόβλημα συνδυαστικής βελτιστοποίησης που έχει προσελκύσει το ενδιαφέρων πολλών ερευνητών, λόγω των εφαρμογών του. Μπορεί να χρησιμοποιηθεί σε προβλήματα Υπολογιστικής Μοριακής Βιολογίας όπως η αλληλούχιση του DNA και σε προβλήματα της επιστήμης υπολογιστών όπως η συμπίεση δεδομένων. Το SSP είναι ένα NP-hard πρόβλημα. Ένα άρθρο ανασκόπησης για το SSP παρουσιάζεται στο πρώτο κεφάλαιο της παρούσας διατριβής με έναν περιεκτικό και σαφή τρόπο, καλύπτοντας ολόκληρη τη σχετική βιβλιογραφία, αναδεικνύοντας την κατακτημένη γνώση και βοηθώντας στην μελλοντική έρευνα.Η μέθοδος GRASP (Greedy Randomized Adaptive Search Procedure) είναι μια επαναληπτική ευρετική μέθοδος για συνδυαστική βελτιστοποίηση. Η μέθοδος Path Relinking (PR) αποτελεί έναν τρόπο ενοποίησης των στρατηγικών εντατικοποίησης και διαφοροποίησης στην αναζήτηση για βέλτιστες λύσεις. Η PR στα πλαίσια του GRASP εισήχθη ως μηχανισμός μνήμης για την αξιοποίηση των δεδομένων από καλές λύσεις που έχουν ήδη βρεθεί. Στο δεύτερο κεφάλαιο, παρουσιάζεται η υλοποίηση της μεθόδου GRASP με PR για το SSP. Η νέα μέθοδος λύνει στιγμιότυπα μεγάλης κλίμακας και υπερτερεί του φυσικού άπληστου αλγόριθμου στη συντριπτική πλειοψηφία των στιγμιοτύπων που δοκιμάστηκαν. Η προτεινόμενη μέθοδος είναι ικανή να παράγει πολλαπλές λύσεις κοντά στο βέλτιστο, γεγονός το οποίο είναι σημαντικό για την πρακτική της αλληλούχισης του DNA και επιτρέπει μια φυσική και εύκολη παράλληλη υλοποίηση. Ένα σύνολο αναφοράς στιγμιοτύπων με γνωστή βέλτιστη λύση κατασκευάστηκε χρησιμοποιώντας μια νέα Διατύπωση Ακέραιου Προγραμματισμού (Integer Programming Formulation) για το SSP.Η οικογένεια των γράφων επικάλυψης αποτελεί ένα κατάλληλο είδος δομής δεδομένων για την περίπτωση του SSP. Έχουν εφαρμογές στην αλληλούχιση γονιδιώματος, στην συμπίεση ακολουθιών και στον χρονοπρογραμματισμό μηχανών. Ένας κατευθυνόμενος γράφος με βάρη είναι γράφος επικάλυψης αν υπάρχει ένα σύνολο από ακολουθίες, οι οποίες βρίσκονται σε ένα προς ένα αντιστοιχία με τις κορυφές του γράφου, έτσι ώστε κάθε βάρος του γράφου να ισούται με την επικάλυψη μεταξύ των αντίστοιχων ακολουθιών. Στο τρίτο κεφάλαιο της παρούσας διατριβής, παρουσιάζεται ένα θεώρημα χαρακτηρισμού των γράφων επικάλυψης και ο αντίστοιχος αλγόριθμος αναγνώρισής τους.Το Quadratic Assignment Problem (QAP) είναι ένα από τα δυσκολότερα προβλήματα συνδυαστικής βελτιστοποίησης. Το QAP είναι ένα NP-hard πρόβλημα, ενώ η εύρεση ενός ε-προσεγγιστικού αλγόριθμου για αυτό είναι επίσης δύσκολη. Ο κλασικός άπληστος αλγόριθμος για διακριτά προβλήματα βελτιστοποίησης όπου η βέλτιστη λύση είναι ένα μεγιστοτικό ανεξάρτητο υποσύνολο ενός πεπερασμένου συνόλου βάσης με στοιχεία με βάρη, μπορεί να οριστεί με δύο διαφορετικούς τρόπους που είναι δυϊκοί ο ένας προς το άλλο. Τον άπληστο-εισαγωγής (greedy-in) αλγόριθμο, όπου μια λύση κατασκευάζεται από ένα κενό σύνολο με την εισαγωγή του επόμενου καλύτερου στοιχείου, ενός κάθε φορά, μέχρι να προκύψει μια μη εφικτή λύση και τον άπληστο-εξαγωγής (greedy-out) αλγόριθμο, όπου ξεκινώντας από το σύνολο βάσης, διαγράφεται το επόμενο χειρότερο στοιχείο, ένα κάθε φορά, μέχρι να προκύψει κάποια εφικτή λύση. Έχει αποδειχτεί ότι ενώ ο πρώτος αλγόριθμος παρέχει έναν παράγοντα προσέγγισης για τα προβλήματα μεγιστοποίησης, η απόδοσή του στην χειρότερη περίπτωση δεν είναι φραγμένη για τα προβλήματα ελαχιστοποίησης και το αντίστροφο για τον δεύτερο αλγόριθμο. Στο τέταρτο κεφάλαιο αυτής της διατριβής, παρουσιάζεται ο άπληστος-εξαγωγής αλγόριθμος για το QAP, αφότου αναπτύσσεται ένας συνδυαστικός χαρακτηρισμός των λύσεων του προβλήματος.


2020 ◽  
Vol 12 (2) ◽  
pp. 434-442
Author(s):  
S.E. Monabbati ◽  
H. Torabi

Integer programming is a tool for solving some combinatorial optimization problems. In this paper, we deal with combinatorial optimization problems on finite topologies. We use the binary representation of the sets to characterize finite topologies as the solutions of a Boolean quadratic system. This system is used as a basic model for formulating other types of topologies (e.g. door topology and $T_0$-topology) and some combinatorial optimization problems on finite topologies. As an example of the proposed model, we found that the smallest number $m(k)$ for which the topology exists on an $m(k)$-elements set containing exactly $k$ open sets, for $k = 8$ and $k = 15$ is $3$ and $5$, respectively.


2005 ◽  
Vol 35 (4) ◽  
pp. 832-842 ◽  
Author(s):  
Eldon A Gunn ◽  
Evelyn W Richards

We present a new linear integer programming formulation of adjacency constraints for the area restriction model. These constraints are small in number and are a strong model for the adjacency problem. We describe constraint development, including strengthening and lifting, to improve the basic formulation. The model does not prohibit all adjacency violations, but computations show they are few in number. Using example forests ranging from 750 to more than 6000 polygons, optimization problems were solved and good solutions obtained in very short computational time.


Sign in / Sign up

Export Citation Format

Share Document