An analysis of film boiling of a binary mixture in a porous medium

1991 ◽  
Vol 34 (3) ◽  
pp. 757-766 ◽  
Author(s):  
Guy R. Essome ◽  
J. Orozco
1987 ◽  
Vol 109 (4) ◽  
pp. 997-1002 ◽  
Author(s):  
A. Nakayama ◽  
H. Koyama ◽  
F. Kuwahara

The two-phase boundary layer theory was adopted to investigate subcooled free-convection film boiling over a body of arbitrary shape embedded in a porous medium. A general similarity variable which accounts for the geometric effect on the boundary layer length scale was introduced to treat the problem once for all possible two-dimensional and axisymmetric bodies. By virtue of this generalized transformation, the set of governing equations and boundary conditions for an arbitrary shape reduces into the one for a vertical flat plate already solved by Cheng and Verma. Thus, the numerical values furnished for a flat plate may readily be tranlsated for any particular body configuration of concern. Furthermore, an explicit Nusselt number expression in terms of the parameters associated with the degrees of subcooling and superheating has been established upon considering physical limiting conditions.


2006 ◽  
Author(s):  
T. J. Jaber ◽  
M. Z. Saghir

A cavity of 10 mm in width, 10 mm in height, and 32.1 mm in horizontal length filled with Al2O3 porous medium designed in Pau project to investigate thermal diffusion phenomena, or Ludwig-Soret effect. A lateral heating condition was applied with 10 °C at the left wall and 50 °C at the right wall. The thermosolutal convection of a binary mixture of water-ethanol at 75.0 MPa pressure, a ternary mixture with methane, n-butane, and n-dodecan at 35.0 MPa pressure, and a ternary mixture of n-dodecane, isobutylbenzene, and tetrahydonaphthalene at atmosphere pressure inside the Al2O3 porous medium cavity were numerically investigated. The thermal conductivity and the permeability of Al2O3 porous medium on the Ludwig-Soret effect were analyzed, the former had little influence, but the later had strong impact on the compositional separation at the steady state of thermosolutal convection, which were analyzed globally with separation ratio. The distributions of component mole fraction(s) on the horizontal and vertical lines in the center of the porous cavity were also shown to study the details of the compositional separation at the steady state of thermosolutal convection. Recommendations are made for the experimental design based on the results of numerical analysis


2020 ◽  
Vol 52 (3) ◽  
pp. 035501
Author(s):  
P Hounsou ◽  
A V Monwanou ◽  
C H Miwadinou ◽  
J B Chabi Orou

1972 ◽  
Vol 15 (12) ◽  
pp. 2427-2445 ◽  
Author(s):  
S.J.D Van Stralen ◽  
C.J.J Joosen ◽  
W.M Sluyter
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document