thermosolutal convection
Recently Published Documents


TOTAL DOCUMENTS

251
(FIVE YEARS 38)

H-INDEX

28
(FIVE YEARS 2)

2022 ◽  
Vol 69 (1) ◽  
Author(s):  
Housseyn Smahi ◽  
Djilali Ameur ◽  
Joanna Dib ◽  
Isabelle Raspo

AbstractIn this paper, we present a numerical study along with an exhaustive adsorption investigation in a binary dilute mixture model nearby the solvent’s critical point in a configuration relevant for soil remediation. By means of this model, mass and heat transfer efficiency were qualitatively and quantitatively discussed through this work. The convergence of the solution was evaluated on the values of the Nusselt and Sherwood numbers. The results reveal intense convection expanding into the cavity close to the critical point, thus enabling homogeneous adsorption of the solute. Moreover, the mass fraction perturbation isolines exhibit the existence, along the adsorbent plate, of a thin boundary layer which becomes thinner when approaching the critical point.


Metals ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 29
Author(s):  
Chunping Zhang ◽  
Abdelhalim Loucif ◽  
Mohammad Jahazi ◽  
Jean-Benoit Morin

In the present work, the influence of filling rate on macrosegregation in a 40-Metric Ton (MT) ingot of a high-strength low-carbon steel was studied using finite element (FE) simulation. The modelling of the filling and solidification processes were realized with a two-phase (liquid-solid) multiscale 3D model. The liquid flow induced by the pouring jet, the thermosolutal convection, and the thermomechanical deformation of the solid phase were taken into consideration. Two filling rates were examined, representing the upper and lower manufacturing limits for casting of large size ingots made of high strength steels for applications in energy and transportation industries. The evolution of solute transport, as well as its associated phenomena throughout the filling and cooling stages, were also investigated. It was found that increasing the filling rate reduced macrosegregation intensity in the upper section, along the centerline and in the mid-radius regions of the ingot. The results were analyzed in the framework of heat and mass transfer theories, liquid flow dynamics, and macrosegregation formation mechanisms.


2021 ◽  
Vol 922 (2) ◽  
pp. 195
Author(s):  
D. W. Hughes ◽  
N. H. Brummell

Abstract Double-diffusive systems, such as thermosolutal convection, in which the density depends on two components that diffuse at different rates, are prone to both steady and oscillatory instabilities. Such systems can evolve into layered states, in which both components, and also the density, adopt a “staircase” profile. Turbulent transport is enhanced significantly in the layered state. Here we exploit an analogy between magnetic buoyancy and thermosolutal convection in order to demonstrate the phenomenon of magnetic layering. We examine the long-term nonlinear evolution of a vertically stratified horizontal magnetic field in the so-called “diffusive regime,” where an oscillatory linear instability operates. Motivated astrophysically, we consider the case where the viscous and magnetic diffusivities are much smaller than the thermal diffusivity. We demonstrate that diffusive layering can occur even for subadiabatic temperature gradients. Magnetic layering may be relevant for stellar radiative zones, with implications for the turbulent transport of heat, magnetic field, and chemical elements.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Abdelraheem M. Aly ◽  
Shreen El-Sapa

Purpose The purpose of this paper is to work out the magnetic forces on heat/mass transmission in a cavity filled with a nanofluid and wavy porous medium by applying the incompressible smoothed particle hydrodynamics (ISPH) method. Design/methodology/approach The cavity is filled by a nanofluid and an undulating layer of a porous medium. The inserted two circular cylinders are rotated around the cavity’s center by a uniform circular velocity. The outer circular cylinder has four gates, and it carries two different boundary conditions. The inner circular cylinder is carrying Th and Ch. The Lagrangian description of the dimensionless regulating equations is solved numerically by the ISPH method. Findings The major outcomes of the completed numerical simulations illustrated the significance of the wavy porous layer in declining the nanofluid movements, temperature and concentration in a cavity. The nanofluid movements are declining by an increase in nanoparticle parameter and Hartmann number. The variations on the boundary conditions of an outer circular cylinder are changing the lineaments of heat/mass transfer in a cavity. Originality/value The originality of this study is investigating the dual rotations of the cylinders on magnetohydrodynamics thermosolutal convection of a nanofluid in a cavity saturated by two wavy horizontal porous layers.


Sign in / Sign up

Export Citation Format

Share Document