Comparison between equivalent linearization and Gaussian closure for random vibration analysis of several nonlinear systems

1990 ◽  
Vol 28 (9) ◽  
pp. 897-905 ◽  
Author(s):  
Mohammad Noori ◽  
H. Davoodi
1986 ◽  
Vol 108 (4) ◽  
pp. 411-420 ◽  
Author(s):  
Thomas T. Baber ◽  
Mohammed N. Noori

A simple constructive technique for the development of rate-type hysteresis models for general nonlinear system is presented. The technique is used to develop hysteresis models to incorporate time history-dependent postyield restorting forces, and general pinching behavior in smoothly varying deteriorating models. Applications of these models to random vibration analysis modeling via simulation and equivalent linearization techniques under Gaussian noise excitation is presented.


2009 ◽  
Vol 03 (04) ◽  
pp. 291-303
Author(s):  
YONG HE ◽  
WEI-LIANG JIN

Stochastic equivalent linearization (SEL) method has gained wide popularity because of its versatility in application to multiple-degree-of-freedom (MDOF) nonlinear systems. It is restricted in the random vibration analysis of flexible structures because of the implicit nonlinear system. This paper presents a new method for the equivalent nonlinear system of flexible structures. Using this method, the implicit geometrically nonlinear system can be represented as an explicit equivalent nonlinear system. According to the modal analysis method, the geometrically nonlinear force is replaced by a high-order moment of modal coordinate. The MDOF physical system is translated into a modal system, which could be solved easily. Based on the equivalent nonlinear system, the nonlinear random vibration method is presented by using SEL technology. By using the pseudo-excitation method, the efficiency of the nonlinear random vibration method is increased obviously. The rapid calculation makes it possible to analyze the nonlinear random vibration of MDOF flexible structure. The validation shows that the method has reasonable precision and high efficiency and it could be used in the random vibration analysis of practical flexible structures.


ICTE 2015 ◽  
2015 ◽  
Author(s):  
Hanfei Guo ◽  
Xiaoxue Liu ◽  
Wei Tong ◽  
Youwei Zhang ◽  
Yanlei Zhang

2017 ◽  
Vol 400 ◽  
pp. 481-507 ◽  
Author(s):  
Yanbin Li ◽  
Sameer B. Mulani ◽  
Rakesh K. Kapania ◽  
Qingguo Fei ◽  
Shaoqing Wu

1985 ◽  
Vol 107 (2) ◽  
pp. 196-202
Author(s):  
M. C. Leu ◽  
M. Jirapongphan

Two types of flow-induced vibrations in idling circular saws, random vibration and resonant vibration, were modeled and analyzed. The excitation source, which is the flow pressure fluctuations, was modeled as discrete forces acting at the saw teeth. The response was assumed to be uncoupled from the excitation in the random vibration analysis but coupled with the excitation in the resonant vibration analysis. The random vibration was solved in terms of statistical rms amplitudes and the resonant vibration as a time function. The analytical results captured many characteristics of vibration phenomena observed in idling saw experiments.


Sign in / Sign up

Export Citation Format

Share Document