Finite element method for rigid-plastic analysis of metal forming—Formulation for finite deformation

1982 ◽  
Vol 24 (8) ◽  
pp. 459-468 ◽  
Author(s):  
K. Osakada ◽  
J. Nakano ◽  
K. Mori
Author(s):  
Shiro Kobayashi ◽  
Soo-Ik Oh ◽  
Taylan Altan

The application of computer-aided design and manufacturing techniques is becoming essential in modern metal-forming technology. Thus process modeling for the determination of deformation mechanics has been a major concern in research . In light of these developments, the finite element method--a technique by which an object is decomposed into pieces and treated as isolated, interacting sections--has steadily assumed increased importance. This volume addresses advances in modern metal-forming technology, computer-aided design and engineering, and the finite element method.


2011 ◽  
Vol 474-476 ◽  
pp. 251-254
Author(s):  
Jian Jun Wu ◽  
Wei Liu ◽  
Yu Jing Zhao

The multi-step forward finite element method is presented for the numerical simulation of multi-step sheet metal forming. The traditional constitutive relationship is modified according to the multi-step forming processes, and double spreading plane based mapping method is used to obtain the initial solutions of the intermediate configurations. To verify the multi-step forward FEM, the two-step simulation of a stepped box deep-drawing part is carried out as it is in the experiment. The comparison with the results of the incremental FEM and test shows that the multi-step forward FEM is efficient for the numerical simulation of multi-step sheet metal forming processes.


2010 ◽  
Vol 46 (12) ◽  
pp. 1146-1154 ◽  
Author(s):  
S.H. Zhang ◽  
G.L. Zhang ◽  
J.S. Liu ◽  
C.S. Li ◽  
R.B. Mei

Sign in / Sign up

Export Citation Format

Share Document