Molecule and aerosol particle wall losses in SMOG chambers made of glass

1989 ◽  
Vol 20 (1) ◽  
pp. 113-122 ◽  
Author(s):  
R. Van Dingenen ◽  
F. Raes ◽  
H. Vanmarcke
2015 ◽  
Vol 15 (11) ◽  
pp. 15243-15288
Author(s):  
Q. Bian ◽  
A. A. May ◽  
S. M. Kreidenweis ◽  
J. R. Pierce

Abstract. Smog chambers are extensively used to study processes that drive gas and particle evolution in the atmosphere. A limitation of these experiments is that particles and gas-phase species may be lost to chamber walls on shorter timescales than the timescales of the atmospheric processes being studied in the chamber experiments. These particle and vapor wall losses have been investigated in recent studies of secondary organic aerosol (SOA) formation, but they have not been systematically investigated in experiments of primary emissions from combustion. The semi-volatile nature of combustion emissions (e.g. from wood smoke) may complicate the behavior of particle and vapor wall deposition in the chamber over the course of the experiments due to the competition between gas/particle and gas/wall partitioning. Losses of vapors to the walls may impact particle evaporation in these experiments, and potential precursors for SOA formation from combustion may be lost to the walls, causing underestimates of aerosol yields. Here, we conduct simulations to determine how particle and gas-phase wall losses contributed to the observed evolution of the aerosol during experiments in the third Fire Lab At Missoula Experiment (FLAME III). We use the TwO-Moment Aerosol Sectional (TOMAS) microphysics algorithm coupled with the organic volatility basis set (VBS) and wall-loss formulations to examine the predicted extent of particle and vapor wall losses. We limit the scope of our study to the dark periods in the chamber before photo-oxidation to simplify the aerosol system for this initial study. Our model simulations suggest that over one third of the initial particle-phase organic mass (36%) was lost during the experiments, and roughly half of this particle organic mass loss was from direct particle wall loss (56% of the loss) with the remainder from evaporation of the particles driven by vapor losses to the walls (44% of the loss). We perform a series of sensitivity tests to understand uncertainties in our simulations. Uncertainty in the initial wood-smoke volatility distribution contributes 23% uncertainty to the final particle organic mass remaining in the chamber (relative to base-assumptions simulation). We show that the total mass loss may depend on the effective saturation concentration of vapor with respect to the walls as these values currently vary widely in the literature. The details of smoke dilution during the filling of smog chambers may influence the mass loss to the walls, and a dilution of ~ 25:1 during the experiments increased particle organic mass loss by 64% compared to a simulation where we assume the particles and vapors are initially in equilibrium in the chamber. Finally, we discuss how our findings may influence interpretations of emission factors and SOA production in wood-smoke smog-chamber experiments.


2015 ◽  
Vol 15 (19) ◽  
pp. 11027-11045 ◽  
Author(s):  
Q. Bian ◽  
A. A. May ◽  
S. M. Kreidenweis ◽  
J. R. Pierce

Abstract. Smog chambers are extensively used to study processes that drive gas and particle evolution in the atmosphere. A limitation of these experiments is that particles and gas-phase species may be lost to chamber walls on shorter timescales than the timescales of the atmospheric processes being studied in the chamber experiments. These particle and vapor wall losses have been investigated in recent studies of secondary organic aerosol (SOA) formation, but they have not been systematically investigated in experiments of primary emissions from combustion. The semi-volatile nature of combustion emissions (e.g. from wood smoke) may complicate the behavior of particle and vapor wall deposition in the chamber over the course of the experiments due to the competition between gas/particle and gas/wall partitioning. Losses of vapors to the walls may impact particle evaporation in these experiments, and potential precursors for SOA formation from combustion may be lost to the walls, causing underestimations of aerosol yields. Here, we conduct simulations to determine how particle and gas-phase wall losses contributed to the observed evolution of the aerosol during experiments in the third Fire Lab At Missoula Experiment (FLAME III). We use the TwO-Moment Aerosol Sectional (TOMAS) microphysics algorithm coupled with the organic volatility basis set (VBS) and wall-loss formulations to examine the predicted extent of particle and vapor wall losses. We limit the scope of our study to the dark periods in the chamber before photo-oxidation to simplify the aerosol system for this initial study. Our model simulations suggest that over one-third of the initial particle-phase organic mass (41 %) was lost during the experiments, and over half of this particle-organic mass loss was from direct particle wall loss (65 % of the loss) with the remainder from evaporation of the particles driven by vapor losses to the walls (35 % of the loss). We perform a series of sensitivity tests to understand uncertainties in our simulations. Uncertainty in the initial wood-smoke volatility distribution contributes 18 % uncertainty to the final particle-organic mass remaining in the chamber (relative to base-assumption simulation). We show that the total mass loss may depend on the effective saturation concentration of vapor with respect to the walls as these values currently vary widely in the literature. The details of smoke dilution during the filling of smog chambers may influence the mass loss to the walls, and a dilution of ~ 25:1 during the experiments increased particle-organic mass loss by 33 % compared to a simulation where we assume the particles and vapors are initially in equilibrium in the chamber. Finally, we discuss how our findings may influence interpretations of emission factors and SOA production in wood-smoke smog-chamber experiments.


1985 ◽  
Vol 19 (12) ◽  
pp. 1176-1182 ◽  
Author(s):  
Peter H. McMurry ◽  
Daniel. Grosjean

Tellus B ◽  
2008 ◽  
Vol 60 (4) ◽  
Author(s):  
Miikka Dal Maso ◽  
Antti Hyvärinen ◽  
Mika Komppula ◽  
Peter Tunved ◽  
Veli-Matti Kerminen ◽  
...  

2020 ◽  
Vol 33 (5) ◽  
pp. 524-530
Author(s):  
K. A. Volkova ◽  
S. S. Anikin ◽  
E. F. Mihailov ◽  
D. V. Ionov ◽  
S. S. Vlasenko ◽  
...  

2005 ◽  
Vol 39 (12) ◽  
pp. 2261-2273 ◽  
Author(s):  
Pentti Paatero ◽  
Pasi Aalto ◽  
Sally Picciotto ◽  
Tom Bellander ◽  
Gemma Castaño ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document