Phase Extraction
Recently Published Documents


TOTAL DOCUMENTS

13124
(FIVE YEARS 3930)

H-INDEX

142
(FIVE YEARS 42)

Polymers ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 311
Author(s):  
Ruth Oye Auke ◽  
Guilhem Arrachart ◽  
Romain Tavernier ◽  
Ghislain David ◽  
Stéphane Pellet-Rostaing

Rare-earth elements (REEs) are involved in most high technology devices and have become critical for many countries. The progress of processes for the extraction and recovery of REEs is therefore essential. Liquid–solid extraction methods are an attractive alternative to the conventional solvent extraction process used for the separation and/or purification of REEs. For this purpose, a solid-phase extraction system was investigated for the extraction and valorization of REEs. Ion-exchange resins were synthesized involving the condensation of terephthalaldehyde with resorcinol under alkaline conditions. The terephthalaldehyde, which is a non-hazardous aromatic dialdehyde, was used as an alternative to formaldehyde that is toxic and traditionally involved to prepare phenolic ion-exchange resins. The resulting formaldehyde-free resole-type phenolic resins were characterized and their ion-exchange capacity was investigated in regard to the extraction of rare-earth elements. We herein present a promising formaldehyde and phenol-free as a potential candidate for solid–liquid extraction REE with a capacity higher than 50 mg/g and the possibility to back-extract the REEs by a striping step using a 2 M HNO3 solution.


2022 ◽  
Vol 20 (2) ◽  
pp. 389-401
Author(s):  
Jiaqi Yuan ◽  
Yunting Wang ◽  
Shengquan Mi ◽  
Jiayu Zhang ◽  
Yaxuan Sun

Purpose: To determine the metabolism of caffeic acid in rats. Methods: Sprague-Dawley rats were intragastrically administered caffeic acid in saline suspension, and biological samples collected. After sample pretreatment by solid phase extraction, ultra-high performance liquid chromatography combined with quadrupole-time of flight mass spectrometry system (UHPLC-Q-TOF-MS/MS) was established to rapidly screen and characterize caffeic acid metabolites in rats. Waters HSS T3 UPLC chromatographic column (2.1 mm × 100 mm, 1.7 μm) was applied for the gradient elution with aqueous solution of formic acid (A)-acetonitrile (B). Mass spectral data for the biological samples in electrospray positive and negative ion modes were collected and analyzed by SCIEX OS 1.3 workstation. Results: Based on their precise molecular weights and multistage mass spectrometry cleavage information, caffeic acid and 21 metabolites in vivo were identified. The results demonstrate that the biotransformation of caffeic acid in vivo was mainly achieved via hydrogenation, hydroxylation, methylation, sulfonation, glucuronidation, acetylation, and composite reactions. Conclusion: The metabolites and metabolic pathways of caffeic acid in rats have been rapidly elucidated, and its potential pharmacodynamics forms have been clarified. This provides a valuable and meaningful reference for the study of caffeic acid metabolites, biological activities, and its medicinal material basis in vivo.


Metabolites ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 77
Author(s):  
Rikke Hald Jensen ◽  
Marie Rønn ◽  
Mirka Thorsteinsson ◽  
Dana W. Olijhoek ◽  
Mette Olaf Nielsen ◽  
...  

This study systematically evaluates the presence of methane mitigating metabolites in two hemp (Cannabis sativa L.) varieties, Futura 75 and Finola. Hemp metabolites were extracted with methanol and fractionated using Solid Phase Extraction (SPE). Extracts, fractions, and the remaining pulp were screened for their methane mitigating potential using an in vitro model of rumen fermentation. The bioactive metabolites were identified with Liquid Chromatography-Mass Spectrometry (LC-MS). When incubated with a standard feed (maize silage), the extract of Futura 75 significantly reduced methane production compared to that of control (without added extract) and without negative effects on feed degradability and volatile fatty acid patterns. The compounds responsible for the methane mitigating effect were assigned to flavonoid glycosides. However, none of the fractions of Futura 75 or the pulp exhibited similar effect on methane emission. Butyric acid concentration in the fermentation inoculum was significantly increased, which could indicate why methane production was higher, when incubated with the fractions and the pulp. The extract of Finola did not show a similar significant effect, however, there was a numerical tendency towards lower methane production. The difference in methane mitigating properties between Cannabis sativa L. Futura 75 and Finola, could be related to the content of bioactive flavonoids.


Author(s):  
Tebogo Mphatlalala Mokgehle ◽  
Ntakadzeni Madala ◽  
Wilson Mugera Gitari ◽  
Nikita Tawanda Tavengwa

Abstract A new, fast and efficient method, hyphenated microwave-assisted aqueous two-phase extraction (MA-ATPE) was applied in the extraction of α-solanine from Solanum retroflexum. This environmentally friendly extraction method applied water and ethanol as extraction solvents. Central composite design (CCD) was performed which included numerical parameters such as time, mass of plant powder and microwave power. The categorical factors included the chaotrope — NaCl or the kosmotrope — Na2CO3. Fitting the central composite design response surface model to the data generated a quadratic model with a good fit (R2 = 0.920). The statistically significant (p < 0.05) parameters such as time and mass of plant powder were influential in the extraction of α-solanine. Quantification of α-solanine was achieved using a robust and sensitive feature of the ultra-high performance quadrupole time of flight mass spectrometer (UHPLC-qTOF-MS), multiple reaction monitoring (MRM). The optimized condition for the extraction of α-solanine in the presence of NaCl and Na2CO3 was a period of 1 min at a mass of 1.2 g using a microwave power of 40%. Maximal extraction of α-solanine was 93.50 mg kg−1 and 72.16 mg kg−1 for Na2CO3 and NaCl, respectively. The synergistic effect of salting-out and microwave extraction was influential in extraction of α-solanine. Furthermore, the higher negative charge density of the kosmotrope (Na2CO3) was responsible for its greater extraction of α-solanine than chaotrope (NaCl). The shorter optimal extraction times of MA-ATPE make it a potential technique that could meet market demand as it is a quick, green and efficient method for removal of toxic metabolites in nutraceuticals.


Planta Medica ◽  
2022 ◽  
Author(s):  
Elodie Bossard ◽  
Nikolaos Tsafantakis ◽  
Nektarios Aligiannis ◽  
Nikolas Fokialakis

Natural hydroxynaphthoquinone enantiomers (HNQs) are well-described pharmaceutical and cosmeceutical agents especially present in the roots of Alkanna tinctoria (L.) Tausch, a species native to the Mediterranean region. In this work, eco-friendly natural deep eutectic solvents (NaDESs) were developed for the selective extraction of these compounds. An extensive screening was performed using more than sixty tailor-made NaDESs. The impact of the intrinsic physicochemical properties on the HNQs extraction efficiency as well as the specificity towards the different enantiomeric pairs was thoroughly investigated. As a result of a multivariate analysis and of the one factor-a-time solvent optimization, the eutectic mixture composed of levulinic acid and glucose (LeG) using a molar ratio of 5:1 (molHBA:molHBD) and 20% of water (w/w) was found as the most appropriate mixture for the highest extraction efficiency of HNQs. Further optimization of the extraction process was attained by response surface methodology, using a temperature of 45 °C, a solid-to-liquid ratio of 30 mg/mL, and an extraction time of 50 min. A maximum extraction output of 41.72 ± 1.04 mg/g was reached for HNQs, comparable to that of the commonly used organic solvents. A solid-phase extraction step was also proposed for the recovery of HNQs and for NaDESs recycling. Our results revealed NaDESs as a highly customizable class of green solvents with remarkable capabilities for the extraction of HNQs.


Bioanalysis ◽  
2022 ◽  
Author(s):  
Frederick Verbeke ◽  
Nathan Debunne ◽  
Yorick Janssens ◽  
Bart De Spiegeleer ◽  
Evelien Wynendaele

Background: Bacteria coordinate their behavior as a group via communication with their peers, known as ‘ quorum sensing’. Enterococcus faecalis employs quorum sensing via RNPP-peptides which were not yet reported to be present in mammalian biofluids. Results: Solid phase extraction of murine feces was performed, followed by ultra high performance liquid chromatography (UHPLC–MS/MS) in multiple reaction monitoring (MRM) mode (in total <90 min/sample) for the nine known RNPP peptides. Limits of detection ranged between 0.045 and 52 nM. Adequate identification criteria allowed detection of RNPP quorum sensing peptides in 2/20 wild-type murine feces samples (i.e., cAM373 and cOB1). Conclusion: A fit-for-purpose UHPLC–MS/MS method detected these RNPP peptides in wild-type murine feces samples.


Molecules ◽  
2022 ◽  
Vol 27 (2) ◽  
pp. 391
Author(s):  
Jesús Alfredo Araujo-León ◽  
Rolffy Ortiz-Andrade ◽  
Efrén Hernández-Baltazar ◽  
Emanuel Hernández-Núñez ◽  
Julio César Rivera-Leyva ◽  
...  

This study was performed to evaluate and compare the pharmacokinetic parameters between two dosage formulations of hesperidin and naringenin: mixture and tablet. Our objective was to determine that the flavonoid tablet does not significantly modify the pharmacokinetic parameters compared with the mixture. For this study, we administered 161 mg/kg of either mixture (Mix-160) or tablet composed of hesperidin and by intragastric administration. Blood microsamples were collected from tail vein up to 24 h. Serum flavonoid extraction was performed by solid phase extraction and analyzed by LC-MS/MS of triple quadrupole (QqQ). Serum concentration vs. time plot showed that data fitted for a first-order model. The pharmacokinetic parameters were calculated by a noncompartmental model. The results showed that the absorption constant is higher than the elimination constant. The first concentration was found at five minutes, and minimal concentration at 24 h after administration, suggesting a enterohepatic recirculation phenomena and regulation of liver cytochromes’ activity. We did not find meaningful differences between the pharmacokinetic parameters of both samples. We concluded that tablet form did not interfere with the bioavailability of hesperidin and naringenin, and it could be a suitable candidate for developing a drug product.


Sign in / Sign up

Export Citation Format

Share Document