Shell shape variation in the blue mussel, Mytilus edulis L., and its association with enzyme heterozygosity

1985 ◽  
Vol 90 (1) ◽  
pp. 73-80 ◽  
Author(s):  
Jeffry B. Mitton ◽  
Richard K. Koehn
2007 ◽  
Vol 38 (16) ◽  
pp. 1770-1777 ◽  
Author(s):  
Sebastián Krapivka ◽  
Jorge E Toro ◽  
Angélica C Alcapán ◽  
Marcela Astorga ◽  
Pablo Presa ◽  
...  

Genetics ◽  
2004 ◽  
Vol 166 (2) ◽  
pp. 883-894
Author(s):  
Liqin Cao ◽  
Ellen Kenchington ◽  
Eleftherios Zouros

Abstract In Mytilus, females carry predominantly maternal mitochondrial DNA (mtDNA) but males carry maternal mtDNA in their somatic tissues and paternal mtDNA in their gonads. This phenomenon, known as doubly uniparental inheritance (DUI) of mtDNA, presents a major departure from the uniparental transmission of organelle genomes. Eggs of Mytilus edulis from females that produce exclusively daughters and from females that produce mostly sons were fertilized with sperm stained with MitoTracker Green FM, allowing observation of sperm mitochondria in the embryo by epifluorescent and confocal microscopy. In embryos from females that produce only daughters, sperm mitochondria are randomly dispersed among blastomeres. In embryos from females that produce mostly sons, sperm mitochondria tend to aggregate and end up in one blastomere in the two- and four-cell stages. We postulate that the aggregate eventually ends up in the first germ cells, thus accounting for the presence of paternal mtDNA in the male gonad. This is the first evidence for different behaviors of sperm mitochondria in developing embryos that may explain the tight linkage between gender and inheritance of paternal mitochondrial DNA in species with DUI.


2021 ◽  
Vol 167 ◽  
pp. 112295
Author(s):  
Amina Khalid ◽  
Aurore Zalouk-Vergnoux ◽  
Samira Benali ◽  
Rosica Mincheva ◽  
Jean-Marie Raquez ◽  
...  
Keyword(s):  

2020 ◽  
Vol 17 (163) ◽  
pp. 20190721
Author(s):  
J. Larsson ◽  
A. M. Westram ◽  
S. Bengmark ◽  
T. Lundh ◽  
R. K. Butlin

The growth of snail shells can be described by simple mathematical rules. Variation in a few parameters can explain much of the diversity of shell shapes seen in nature. However, empirical studies of gastropod shell shape variation typically use geometric morphometric approaches, which do not capture this growth pattern. We have developed a way to infer a set of developmentally descriptive shape parameters based on three-dimensional logarithmic helicospiral growth and using landmarks from two-dimensional shell images as input. We demonstrate the utility of this approach, and compare it to the geometric morphometric approach, using a large set of Littorina saxatilis shells in which locally adapted populations differ in shape. Our method can be modified easily to make it applicable to a wide range of shell forms, which would allow for investigations of the similarities and differences between and within many different species of gastropods.


1984 ◽  
Vol 11 (4) ◽  
pp. 253-274 ◽  
Author(s):  
A. Calabrese ◽  
J.R. MacInnes ◽  
D.A. Nelson ◽  
R.A. Greig ◽  
P.P. Yevich
Keyword(s):  

Paleobiology ◽  
2021 ◽  
pp. 1-23
Author(s):  
Pablo S. Milla Carmona ◽  
Dario G. Lazo ◽  
Ignacio M. Soto

Abstract Despite the paleontological relevance and paleobiological interest of trigoniid bivalves, our knowledge of their ontogeny—an aspect of crucial evolutionary importance—remains limited. Here, we assess the intra- and interspecific ontogenetic variations exhibited by the genus Steinmanella Crickmay (Myophorellidae: Steinmanellinae) during the early Valanginian–late Hauterivian of Argentina and explore some of their implications. The (ontogenetic) allometric trajectories of seven species recognized for this interval were estimated from longitudinal data using 3D geometric morphometrics, segmented regressions, and model selection tools, and then compared using trajectory analysis and allometric spaces. Our results show that within-species shell shape variation describes biphasic ontogenetic trajectories, decoupled from ontogenetic changes shown by sculpture, with a gradual decay in magnitude as ontogeny progresses. The modes of change characterizing each phase (crescentic growth and anteroposterior elongation, respectively) are conserved across species, thus representing a feature of Steinmanella ontogeny; its evolutionary origin is inferred to be a consequence of the rate modification and allometric repatterning of the ancestral ontogeny. Among species, trajectories are more variable during early ontogenetic stages, becoming increasingly conservative at later stages. Trajectories’ general orientation allows recognition of two stratigraphically consecutive groups of species, hinting at a potentially higher genus-level diversity in the studied interval. In terms of functional morphology, juveniles had a morphology more suited for active burrowing than adults, whose features are associated with a sedentary lifestyle. The characteristic disparity of trigoniids could be related to the existence of an ontogenetic period of greater shell malleability betrayed by the presence of crescentic shape change.


Sign in / Sign up

Export Citation Format

Share Document