ontogenetic trajectories
Recently Published Documents


TOTAL DOCUMENTS

74
(FIVE YEARS 12)

H-INDEX

18
(FIVE YEARS 0)

Paleobiology ◽  
2021 ◽  
pp. 1-23
Author(s):  
Pablo S. Milla Carmona ◽  
Dario G. Lazo ◽  
Ignacio M. Soto

Abstract Despite the paleontological relevance and paleobiological interest of trigoniid bivalves, our knowledge of their ontogeny—an aspect of crucial evolutionary importance—remains limited. Here, we assess the intra- and interspecific ontogenetic variations exhibited by the genus Steinmanella Crickmay (Myophorellidae: Steinmanellinae) during the early Valanginian–late Hauterivian of Argentina and explore some of their implications. The (ontogenetic) allometric trajectories of seven species recognized for this interval were estimated from longitudinal data using 3D geometric morphometrics, segmented regressions, and model selection tools, and then compared using trajectory analysis and allometric spaces. Our results show that within-species shell shape variation describes biphasic ontogenetic trajectories, decoupled from ontogenetic changes shown by sculpture, with a gradual decay in magnitude as ontogeny progresses. The modes of change characterizing each phase (crescentic growth and anteroposterior elongation, respectively) are conserved across species, thus representing a feature of Steinmanella ontogeny; its evolutionary origin is inferred to be a consequence of the rate modification and allometric repatterning of the ancestral ontogeny. Among species, trajectories are more variable during early ontogenetic stages, becoming increasingly conservative at later stages. Trajectories’ general orientation allows recognition of two stratigraphically consecutive groups of species, hinting at a potentially higher genus-level diversity in the studied interval. In terms of functional morphology, juveniles had a morphology more suited for active burrowing than adults, whose features are associated with a sedentary lifestyle. The characteristic disparity of trigoniids could be related to the existence of an ontogenetic period of greater shell malleability betrayed by the presence of crescentic shape change.


Author(s):  
Russell D. C. BICKNELL ◽  
Lisa AMATI

ABSTRACT Eurypterids (sea scorpions) are a group of extinct, marine euchelicerates that have an extensive Palaeozoic record. Despite lacking a biomineralised exoskeleton, eurypterids are abundantly preserved within select deposits. These collections make statistical analyses comparing the morphology of different genera possible. However, eurypterid shape has not yet been documented with modern geometric morphometric tools. Here, we summarise the previous statistical assessments of eurypterid morphology and expand this research by presenting landmark and semi-landmark analyses of 115 eurypterid specimens within the suborder Eurypterina. We illustrate that lateral compound eye morphology and position drives specimen placement in morphospace and separates proposed apex predators from more generalist forms. Additionally, evidence for size clusters in Eurypterus that may reflect ontogeny is uncovered. We highlight the use of geometric morphometric analyses in supporting the naming of new taxa and demonstrate that these shape data represent a novel means of understanding inter-generic ontogenetic trajectories and uncovering developmental changes within the diverse euarthropod group.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Stefanos Fragkoulis ◽  
Dimosthenis Kerasovitis ◽  
Costas Batargias ◽  
George Koumoundouros

AbstractThe phenotype of juvenile fish is closely associated with the adult phenotype, thus consisting an important quality trait for reared fish stocks. In this study, we estimated the correlation between the juvenile and adult body-shape in Gilthead seabream, and examined the genetic basis of the ontogenetic trajectories. The body shape of 959 pit-tagged fish was periodically examined during the juvenile-to-adult period. Individual shape ontogenetic trajectories were studied in respect to the initial (juvenile) and final (adult) phenotypes, as well as to the rate that adult phenotype is attained (phenotypic integration rate). We found that the juvenile body-shape presented a rapid change up to 192.7 ± 1.9 mm standard length, followed by a phenotypically stable period (plateau). Depending on the shape component considered, body-shape correlations between juvenile and adult stages ranged from 0.22 to 0.76. Heritability estimates (h2) of the final phenotype ranged from 0.370 ± 0.077 to 0.511 ± 0.089, whereas h2 for the phenotypic integration rate was 0.173 ± 0.062. To our knowledge, this is the first study demonstrating that the variance of the ontogenetic trajectories has a substantial additive genetic component. Results are discussed in respect to their potential use in selective breeding programs of Gilthead seabream.


2021 ◽  
Vol 118 (23) ◽  
pp. e2101634118
Author(s):  
Pauline Salis ◽  
Natacha Roux ◽  
Delai Huang ◽  
Anna Marcionetti ◽  
Pierick Mouginot ◽  
...  

Determining how plasticity of developmental traits responds to environmental conditions is a challenge that must combine evolutionary sciences, ecology, and developmental biology. During metamorphosis, fish alter their morphology and color pattern according to environmental cues. We observed that juvenile clownfish (Amphiprion percula) modulate the developmental timing of their adult white bar formation during metamorphosis depending on the sea anemone species in which they are recruited. We observed an earlier formation of white bars when clownfish developed with Stichodactyla gigantea (Sg) than with Heteractis magnifica (Hm). As these bars, composed of iridophores, form during metamorphosis, we hypothesized that timing of their development may be thyroid hormone (TH) dependent. We treated clownfish larvae with TH and found that white bars developed earlier than in control fish. We further observed higher TH levels, associated with rapid white bar formation, in juveniles recruited in Sg than in Hm, explaining the faster white bar formation. Transcriptomic analysis of Sg recruits revealed higher expression of duox, a dual oxidase implicated in TH production as compared to Hm recruits. Finally, we showed that duox is an essential regulator of iridophore pattern timing in zebrafish. Taken together, our results suggest that TH controls the timing of adult color pattern formation and that shifts in duox expression and TH levels are associated with ecological differences resulting in divergent ontogenetic trajectories in color pattern development.


2021 ◽  
pp. e1878201
Author(s):  
Nathan J. Enriquez ◽  
Nicolás E. Campione ◽  
Tom Brougham ◽  
Federico Fanti ◽  
Matt A. White ◽  
...  

PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e10931
Author(s):  
Eva Alexandra Bischof ◽  
Nils Schlüter ◽  
Dieter Korn ◽  
Jens Lehmann

Ammonoids reached their greatest diversity during the Triassic period. In the early Middle Triassic (Anisian) stage, ammonoid diversity was dominated by representatives of the family Ceratitidae. High taxonomic diversity can, however, be decoupled from their morphologic disparity. Due to its high phenotypic variability, the high diversity of ceratitids of the Anisian of Nevada was initially assumed to be caused by artificial over-splitting. This study aims to contribute data to settle this issue by applying geometric morphometrics methods, using landmarks and semi-landmarks, in the study of ontogenetic cross-sections of ammonoids for the first time. The results reveal that alterations in ontogenetic trajectories, linked to heterochronic processes, lead to the morphologic diversification of the species studied herein. Our knowledge, based on these ontogenetic changes, challenge the traditional treatment of species using solely adult characters for their distinction. This study furthermore demonstrates that the high diversity of the Anisian ammonoid assemblages of Nevada based on the traditional nomenclatoric approach is regarded to be reasonably accurate.


2021 ◽  
Author(s):  
Marina De la Cámara ◽  
Lieke Ponsioen ◽  
Quentin J.B. Horta-Lacueva ◽  
Kalina H Kapralova

ABSTRACTArctic charr (Salvelinus alpinus) in lake Thingvallavatn (Iceland) is one of the most iconic examples of post-glacial adaptive divergence, resulting in four ecomorphs that diverge along the ecological benthic-limnetic axis (bottom lake versus open water feeders), and are distinct both phenotypically and genotypically. Here, we used geometric morphometrics tools on a common garden setup to determine the factors responsible for genetically based shape variation during the post-embryonic ontogeny of two morphs that represent the benthic-limnetic axis: the small benthic (SB) and the planktivorous (PL). This experiment uses pure crosses and F1 reciprocal hybrids between the two morphs, and includes the onset of sexual maturation, offering an excellent opportunity to explore the genetic component of adaptive divergence and the role of sexual dimorphism in this scenario. We found that growth is the main driver of shape variation across time and provided evidence of a genetically-controlled ontogenetic shift that gives rise to the limnetic morph. Additionally, our results indicate that the onset of sexual maturation triggers differences both in sex ontogenetic trajectories and in static shape variation at different time points, likely dissipating the canalisation for traits traditionally associated with benthic-limnetic adaptations.


2020 ◽  
Vol 132 (1) ◽  
pp. 17-31
Author(s):  
Rafael C Duarte ◽  
Gustavo M Dias ◽  
Augusto A V Flores ◽  
Martin Stevens

Abstract Animals frequently exhibit great variation in appearance, especially in heterogeneous habitats where individuals can be concealed differentially against backgrounds. Although background matching is a common anti-predator strategy, gaps exist in our understanding of within- and among-species variation. Specifically, the drivers of changes in appearance associated with habitat use and occurring through ontogeny are poorly understood. Using image analysis, we tested how individual appearance and camouflage in two intertidal crab species, the mud crab Panopeus americanus and the mottled crab Pachygrapsus transversus, relate to ontogeny and habitat use. We predicted that both species would change appearance with ontogeny, but that resident mud crabs would exhibit higher background similarity than generalist mottled crabs. Both species showed ontogenetic changes; the mud crabs became darker, whereas mottled crabs became more green. Small mud crabs were highly variable in colour and pattern, probably stemming from the use of camouflage in heterogeneous habitats during the most vulnerable life stage. Being habitat specialists, mud crabs were better concealed against all backgrounds than mottled crabs. Mottled crabs are motile and generalist, occupying macroalgae-covered rocks when adults, which explains why they are greener and why matches to specific habitats are less valuable. Differential habitat use in crabs can be associated with different coloration and camouflage strategies to avoid predation.


2020 ◽  
Vol 94 (5) ◽  
pp. 829-851
Author(s):  
Eva A. Bischof ◽  
Jens Lehmann

AbstractPtychites is among the most widely distributed ammonoid genera of the Triassic and is namesake of a family and superfamily. However, representatives of the genus mostly show low-level phenotypic disparity. Furthermore, a large number of taxa are based on only a few poorly preserved specimens, creating challenges to determine ptychitid taxonomy. Consequently, a novel approach is needed to improve ptychitid diversity studies. Here, we investigate Ptychites spp. from the middle and late Anisian of Nevada. The species recorded include Ptychites embreei n. sp., which is distinguished by an average conch diameter that is much smaller and shows a more evolute coiling than most of its relatives. The new species ranges from the Gymnotoceras mimetus to the Gymnotoceras rotelliformis zones, which makes it the longest-ranging species of the genus. For the first time, the ontogenetic development of Ptychites was obtained from cross sections where possible. Cross-sectioning highlights unique ontogenetic trajectories in ptychitids. This demonstrates that, despite showing little phenotypic disparity, Ptychites was highly ontogenetically differentiated, and thus the high taxonomic diversity at the species level is justified for the species investigated.UUID: http://zoobank.org/5abe2487-8a00-4b48-adc7-ec7db7a097f7


Lethaia ◽  
2020 ◽  
Vol 53 (4) ◽  
pp. 563-573
Author(s):  
Kazuki Noba ◽  
Haruhiko Yasumuro ◽  
Yuzuru Ikeda ◽  
Ryoji Wani

Sign in / Sign up

Export Citation Format

Share Document