Monoclonal capture antibody ELISA for respiratory syncytial virus: Detection of individual viral antigens and determination of monoclonal antibody specificities

1985 ◽  
Vol 77 (2) ◽  
pp. 247-258 ◽  
Author(s):  
R. Michael Hendry ◽  
Bruce F. Fernie ◽  
Larry J. Anderson ◽  
Ellen Godfrey ◽  
Kenneth McIntosh
1998 ◽  
Vol 178 (6) ◽  
pp. 1555-1561 ◽  
Author(s):  
Richard Malley ◽  
John DeVincenzo ◽  
Octavio Ramilo ◽  
Penelope H. Dennehy ◽  
H. Cody Meissner ◽  
...  

2006 ◽  
Vol 80 (23) ◽  
pp. 11651-11657 ◽  
Author(s):  
Xiaodong Zhao ◽  
Enmei Liu ◽  
Fu-Ping Chen ◽  
Wayne M. Sullender

ABSTRACT Respiratory syncytial virus (RSV) is the only infectious disease for which a monoclonal antibody (MAb) is used in humans. Palivizumab (PZ) is a humanized murine MAb to the F protein of RSV. PZ-resistant viruses appear after in vitro and in vivo growth of RSV in the presence of PZ. Fitness for replication could be a determinant of the likelihood of dissemination of resistant viruses. We assessed the fitness of two PZ-resistant viruses (F212 and MP4). F212 grew less well in cell culture than the parent A2 virus and was predicted to be less fit than A2. Equal amounts of F212 and A2 were mixed and passaged in cell culture. F212 disappeared from the viral population, indicating it was less fit than the A2 virus. The MP4 virus grew as well as A2 in culture and in cotton rats. A2/MP4 virus input ratios of 1:1, 10:1, 100:1, and 1,000:1 were compared in competitive replication. For all input ratios except 1,000:1, the MP4 virus became dominant, supplanting the A2 virus. The MP4 virus also dominated the A2 virus during growth in cotton rats. Thus, the mutant MP4 virus was more fit than A2 virus in both in vitro and in vivo competitive replication. Whether this fitness difference was due to the identified nucleotide substitutions in the F gene or to mutations elsewhere in the genome is unknown. Understanding the mechanisms by which mutant virus fitness increased or decreased could prove useful for consideration in attenuated vaccine design efforts.


2000 ◽  
Vol 31 (1) ◽  
pp. 93-96 ◽  
Author(s):  
Clara Savón ◽  
Angel Goyenechea ◽  
Angel Valdivia ◽  
Danay Chacón ◽  
Reynel Cancio ◽  
...  

Biosensors ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 175
Author(s):  
Wioleta Białobrzeska ◽  
Daniel Firganek ◽  
Maciej Czerkies ◽  
Tomasz Lipniacki ◽  
Marta Skwarecka ◽  
...  

This paper presents the development and comparison of label-free electrochemical immunosensors based on screen-printed gold and glassy carbon (GC) disc electrodes for efficient and rapid detection of respiratory syncytial virus (RSV). Briefly, the antibody specific to the F protein of RSV was successfully immobilized on modified electrodes. Antibody coupling on the Au surface was conducted via 4-aminothiophenol (4-ATP) and glutaraldehyde (GA). The GC surface was modified with poly-L-lysine (PLL) for direct anti-RSV conjugation after EDC/NHS (1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide/N-Hydroxysuccinimide) activation. Electrochemical characterizations of the immunosensors were carried out by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). GC-based immunosensors show a dynamic range of antigen detection from 1.0 × 105 PFU/mL to 1.5×107 PFU/mL, more than 1.0 × 105 PFU/mL to 1.0 × 107 PFU/mL for the Au-based sensor. However, the GC platform is less sensitive and shows a higher detection limit (LOD) for RSV. The limit of detection of the Au immunosensor is 1.1 × 103 PFU/mL, three orders of magnitude lower than 2.85 × 106 PFU/mL for GC. Thus, the Au-based immunosensor has better analytical performance for virus detection than a carbon-based platform due to high sensitivity and very low RSV detection, obtained with good reproducibility.


Sign in / Sign up

Export Citation Format

Share Document