electrochemical immunosensors
Recently Published Documents


TOTAL DOCUMENTS

177
(FIVE YEARS 50)

H-INDEX

39
(FIVE YEARS 7)

Author(s):  
Tahir Raza ◽  
Lijun Qu ◽  
Waquar Ahmed Khokhar ◽  
Boakye Andrews ◽  
Afzal Ali ◽  
...  

Conductive nanomaterials have recently gained a lot of interest due to their excellent physical, chemical, and electrical properties, as well as their numerous nanoscale morphologies, which enable them to be fabricated into a wide range of modern chemical and biological sensors. This study focuses mainly on current applications based on conductive nanostructured materials. They are the key elements in preparing wearable electrochemical Biosensors, including electrochemical immunosensors and DNA biosensors. Conductive nanomaterials such as carbon (Carbon Nanotubes, Graphene), metals and conductive polymers, which provide a large effective surface area, fast electron transfer rate and high electrical conductivity, are summarized in detail. Conductive polymer nanocomposites in combination with carbon and metal nanoparticles have also been addressed to increase sensor performance. In conclusion, a section on current challenges and opportunities in this growing field is forecasted at the end.


Biosensors ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 360
Author(s):  
Jeeyoung Kim ◽  
Min Park

Biosensors used for medical diagnosis work by analyzing physiological fluids. Antibodies have been frequently used as molecular recognition molecules for the specific binding of target analytes from complex biological solutions. Electrochemistry has been introduced for the measurement of quantitative signals from transducer-bound analytes for many reasons, including good sensitivity. Recently, numerous electrochemical immunosensors have been developed and various strategies have been proposed to detect biomarkers. In this paper, the recent progress in electrochemical immunosensors is reviewed. In particular, we focused on the immobilization methods using antibodies for voltammetric, amperometric, impedimetric, and electrochemiluminescent immunosensors.


Chemosensors ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 182
Author(s):  
Subramanian Nellaiappan ◽  
Pavan Kumar Mandali ◽  
Amrish Prabakaran ◽  
Uma Maheswari Krishnan

Human procalcitonin (PCT) is a peptide precursor of the calcium-regulating hormone calcitonin. Traditionally, PCT has been used as a biomarker for severe bacterial infections and sepsis. It has also been recently identified as a potential marker for COVID-19. Normally, serum PCT is intracellularly cleaved to calcitonin, which lowers the levels of PCT (<0.01 ng/mL). In severe infectious diseases and sepsis, serum PCT levels increase above 100 ng/mL in response to pro-inflammatory stimulation. Development of sensors for specific quantification of PCT has resulted in considerable improvement in the sensitivity, linear range and rapid response. Among the various sensing strategies, electrochemical platforms have been extensively investigated owing to their cost-effectiveness, ease of fabrication and portability. Sandwich-type electrochemical immunoassays based on the specific antigen–antibody interactions with an electrochemical transducer and use of nanointerfaces has augmented the electrochemical response of the sensors towards PCT. Identification of a superior combination of electrode material and nanointerface, and translation of the sensing platform into flexible and disposable substrates are under active investigation towards development of a point-of-care device for PCT detection. This review provides an overview of the existing detection strategies and limitations of PCT electrochemical immunosensors, and the emerging directions to address these lacunae.


Nanomaterials ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1757
Author(s):  
Xiaohua Ma ◽  
Dehua Deng ◽  
Ning Xia ◽  
Yuanqiang Hao ◽  
Lin Liu

Nanocatalysts are a promising alternative to natural enzymes as the signal labels of electrochemical biosensors. However, the surface modification of nanocatalysts and sensor electrodes with recognition elements and blockers may form a barrier to direct electron transfer, thus limiting the application of nanocatalysts in electrochemical immunoassays. Electron mediators can accelerate the electron transfer between nanocatalysts and electrodes. Nevertheless, it is hard to simultaneously achieve fast electron exchange between nanocatalysts and redox mediators as well as substrates. This work presents a scheme for the design of electrochemical immunosensors with nanocatalysts as signal labels, in which pyrroloquinoline quinone (PQQ) is the redox-active center of the nanocatalyst. PQQ was decorated on the surface of carbon nanotubes to catalyze the electrochemical oxidation of tris(2-carboxyethyl)phosphine (TCEP) with ferrocenylmethanol (FcM) as the electron mediator. With prostate-specific antigen (PSA) as the model analyte, the detection limit of the sandwich-type immunosensor was found to be 5 pg/mL. The keys to success for this scheme are the slow chemical reaction between TCEP and ferricinum ions, and the high turnover frequency between ferricinum ions, PQQ. and TCEP. This work should be valuable for designing of novel nanolabels and nanocatalytic schemes for electrochemical biosensors.


Chemosensors ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 162
Author(s):  
Ernane de Freitas Martins ◽  
Luis Francisco Pinotti ◽  
Cecilia de Carvalho Castro Silva ◽  
Alexandre Reily Rocha

Electrochemical immunosensors (EI) have been widely investigated in the last several years. Among them, immunosensors based on low-dimensional materials (LDM) stand out, as they could provide a substantial gain in fabricating point-of-care devices, paving the way for fast, precise, and sensitive diagnosis of numerous severe illnesses. The high surface area available in LDMs makes it possible to immobilize a high density of bioreceptors, improving the sensitivity in biorecognition events between antibodies and antigens. If on the one hand, many works present promising results in using LDMs as a sensing material in EIs, on the other hand, very few of them discuss the fundamental interactions involved at the interfaces. Understanding the fundamental Chemistry and Physics of the interactions between the surface of LDMs and the bioreceptors, and how the operating conditions and biorecognition events affect those interactions, is vital when proposing new devices. Here, we present a review of recent works on EIs, focusing on devices that use LDMs (1D and 2D) as the sensing substrate. To do so, we highlight both experimental and theoretical aspects, bringing to light the fundamental aspects of the main interactions occurring at the interfaces and the operating mechanisms in which the detections are based.


Chemosensors ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 85
Author(s):  
Anton Popov ◽  
Benediktas Brasiunas ◽  
Asta Kausaite-Minkstimiene ◽  
Almira Ramanaviciene

With the increasing importance of healthcare and clinical diagnosis, as well as the growing demand for highly sensitive analytical instruments, immunosensors have received considerable attention. In this review, electrochemical immunosensor signal amplification strategies using metal nanoparticles (MNPs) and quantum dots (Qdots) as tags are overviewed, focusing on recent developments in the ultrasensitive detection of biomarkers. MNPs and Qdots can be used separately or in combination with other nanostructures, while performing the function of nanocarriers, electroactive labels, or catalysts. Thus, different functions of MNPs and Qdots as well as recent advances in electrochemical signal amplification are discussed. Additionally, the methods most often used for antibody immobilization on nanoparticles, immunoassay formats, and electrochemical methods for indirect biomarker detection are overviewed.


Sign in / Sign up

Export Citation Format

Share Document