Pharmacology and fine structure of peripheral muscle innervation in the cockroach Periplaneta americana

1965 ◽  
Vol 11 (10) ◽  
pp. 1351-1358 ◽  
Author(s):  
Alicia K. O'Connor ◽  
R.D. O'Brien ◽  
M.M. Salpeter
1960 ◽  
Vol 7 (2) ◽  
pp. 339-344 ◽  
Author(s):  
Arthur Hess

The connectives above and below the second thoracic ganglion and nerves to and from the mesothoracic leg were severed in Periplaneta americana. Isolated ganglia and severed nerve cord were examined in the electron microscope. In the connectives, sheaths of degenerating fibers remain continuous but become thicker and more dense. There is increase in number and more haphazard disposition of the neuroglial processes which ensheath the axons. The cytoplasm contains vacuoles. Dense droplets normally intercalated between the layers of neuroglial processes ensheathing the axons are strikingly increased in number. The axoplasm with its organelles forms dense clumps. Mitochondria in axons are enlarged, the intramitochondrial matrix is more dense, and the internal folds are disorganized. In ganglia, mitochondrial changes in terminal parts of the axons appear similar to those described in the parent axons in the connective. The synaptic portions of nerve fibers appear very dense. Alterations of the sheath are minimal. Synaptic particles in the degenerating axoplasmic coagulum undergo only slight morphological changes and are still present up to 6 days after severance of their nerve fibers. It is difficult to assess whether there are any alterations in the total number of synaptic particles during degeneration.


eLife ◽  
2018 ◽  
Vol 7 ◽  
Author(s):  
Francois M Lambert ◽  
Laura Cardoit ◽  
Elric Courty ◽  
Marion Bougerol ◽  
Muriel Thoby-Brisson ◽  
...  

In vertebrates, functional motoneurons are defined as differentiated neurons that are connected to a central premotor network and activate peripheral muscle using acetylcholine. Generally, motoneurons and muscles develop simultaneously during embryogenesis. However, during Xenopus metamorphosis, developing limb motoneurons must reach their target muscles through the already established larval cholinergic axial neuromuscular system. Here, we demonstrate that at metamorphosis onset, spinal neurons retrogradely labeled from the emerging hindlimbs initially express neither choline acetyltransferase nor vesicular acetylcholine transporter. Nevertheless, they are positive for the motoneuronal transcription factor Islet1/2 and exhibit intrinsic and axial locomotor-driven electrophysiological activity. Moreover, the early appendicular motoneurons activate developing limb muscles via nicotinic antagonist-resistant, glutamate antagonist-sensitive, neuromuscular synapses. Coincidently, the hindlimb muscles transiently express glutamate, but not nicotinic receptors. Subsequently, both pre- and postsynaptic neuromuscular partners switch definitively to typical cholinergic transmitter signaling. Thus, our results demonstrate a novel context-dependent re-specification of neurotransmitter phenotype during neuromuscular system development.


2017 ◽  
Author(s):  
F. M. Lambert ◽  
L. Cardoit ◽  
E. Courty ◽  
M. Bougerol ◽  
M. Thoby-Brisson ◽  
...  

ABSTRACTIn vertebrates, functional motoneurons are defined as differentiated neurons that are connected to a central premotor network and activate peripheral muscle using acetylcholine. Generally, motoneurons and muscles develop simultaneously during embryogenesis. However, during Xenopus metamorphosis, developing limb motoneurons must reach their target muscles through the already established larval cholinergic axial neuromuscular system. Here, we demonstrate that at metamorphosis onset, spinal neurons retrogradely labeled from the emerging hindlimbs initially express neither choline acetyltransferase nor vesicular acetylcholine transporter. Nevertheless, they are positive for the motoneuronal transcription factor Islet1/2 and exhibit intrinsic and axial locomotor-driven electrophysiological activity. Moreover, the early appendicular motoneurons activate developing limb muscles via nicotinic antagonist-resistant, glutamate antagonist-sensitive, neuromuscular synapses. Coincidently, the hindlimb muscles transiently express glutamate, but not nicotinic receptors. Subsequently, both pre- and postsynaptic neuromuscular partners switch definitively to typical cholinergic transmitter signaling. Thus, our results demonstrate a novel context-dependent re-specification of neurotransmitter phenotype during neuromuscular system development.


Sign in / Sign up

Export Citation Format

Share Document