Synthetic DNA bending sequences increase the rate of in vitro transcription initiation at the Escherichia coli lac promoter

1991 ◽  
Vol 219 (2) ◽  
pp. 217-230 ◽  
Author(s):  
Marc R. Gartenberg ◽  
Donald M. Crothers
1985 ◽  
Vol 148 (2) ◽  
pp. 293-298 ◽  
Author(s):  
Ricardo EHRLICH ◽  
Annick LAROUSSE ◽  
Marie-Ange JACQUET ◽  
Monica MARIN ◽  
Claude REISS

2001 ◽  
Vol 48 (4) ◽  
pp. 985-994 ◽  
Author(s):  
I K Kolasa ◽  
T Loziński ◽  
K L Wierzchowski

The kinetics and thermodynamics of the formation of the transcriptional open complex (RPo) by Escherichia coli RNA polymerase at the synthetic Pa promoter bearing consensus -10 and -35 recognition hexamers were studied in vitro. Previously, this promoter was used as a control one in studies on the effect of DNA bending by An x Tn sequences on transcription initiation and shown to be fully functional in E. coli (Loziński et al., 1991, Nucleic Acids Res. 19, 2947; Loziński & Wierzchowski, 1996, Acta Biochim. Polon. 43, 265). The data now obtained demonstrate that the mechanism of Pa-RPo formation and dissociation conforms to the three-step reaction model: bind-nucleate-melt, commonly accepted for natural promoters. Measurements of the dissociation rate constant of Pa-RPo as a function of MgCl2 concentration allowed us to determine the number of Mg2+ ions, nMg approximately/= 4, being bound to the RPo in the course of renaturation of the melted DNA region. This number was found constant in the temperature range of 25-37 degrees C, which indicates that under these conditions the complex remaines fully open. This observation, taken together with the recent evidence from KMnO4 footprinting studies that the length of the melted region in Pa-RPo at 37 degrees C is independent of the presence of Mg2+ ions (Lozinski & Wierzchowski, 2001, Acta Biochim. Polon. 48, 495), testifies that binding of Mg2+ to RPo does not induce its further isomerization, which has been postulated for the lambdaP(R)-RPo complex (Suh et al., 1992, Biochemistry 31, 7815; 1993, Science 259, 358).


1984 ◽  
Vol 4 (12) ◽  
pp. 2876-2882 ◽  
Author(s):  
P Ahlquist ◽  
M Janda

Complete cDNA copies of each of the brome mosaic virus genomic RNAs (3.2, 2.8, and 2.1 kilobases in length) were cloned in a novel transcription vector, pPM1, designed to provide exact control of the transcription initiation site. After cleavage at a unique EcoRI site immediately downstream of the inserted cDNA, these clones can be transcribed in vitro by Escherichia coli RNA polymerase to yield complete copies of the brome mosaic virus RNAs. Dideoxy sequencing of 5' transcript cDNA runoff products and direct sequencing of 32P-3'-end-labeled transcripts show that such transcripts initiate at the same 5' position as natural viral RNA and terminate within the EcoRI runoff site after copying the entire viral RNA sequence. When synthesized in the presence of m7GpppG, the transcripts bear the natural capped 5' terminus of brome mosaic virus RNAs. Such transcripts direct the in vitro translation of proteins which coelectrophorese with the translation products of natural brome mosaic virus RNAs. pPM1 should facilitate in vitro production of other viral and nonviral RNAs.


2003 ◽  
Vol 50 (4) ◽  
pp. 909-920 ◽  
Author(s):  
Iwona K Kolasa ◽  
Tomasz Łoziński ◽  
Kazimierz L Wierzchowski

A-tracts in DNA due to their structural morphology distinctly different from the canonical B-DNA form play an important role in specific recognition of bacterial upstream promoter elements by the carboxyl terminal domain of RNA polymerase alpha subunit and, in turn, in the process of transcription initiation. They are only rarely found in the spacer promoter regions separating the -35 and -10 recognition hexamers. At present, the nature of the protein-DNA contacts formed between RNA polymerase and promoter DNA in transcription initiation can only be inferred from low resolution structural data and mutational and crosslinking experiments. To probe these contacts further, we constructed derivatives of a model Pa promoter bearing in the spacer region one or two An (n = 5 or 6) tracts, in phase with the DNA helical repeat, and studied the effects of thereby induced perturbation of promoter DNA structure on the kinetics of open complex (RPo) formation in vitro by Escherichia coli RNA polymerase. We found that the overall second-order rate constant ka of RPo formation, relative to that at the control promoter, was strongly reduced by one to two orders of magnitude only when the A-tracts were located in the nontemplate strand. A particularly strong 30-fold down effect on ka was exerted by nontemplate A-tracts in the -10 extended promoter region, where an involvement of nontemplate TG (-14, -15) sequence in a specific interaction with region 3 of sigma-subunit is postulated. A-tracts in the latter location caused also 3-fold slower isomerization of the first closed transcription complex into the intermediate one that precedes formation of RPo, and led to two-fold faster dissociation of the latter. All these findings are discussed in relation to recent structural and kinetic models of RPo formation.


Sign in / Sign up

Export Citation Format

Share Document