Dissociation energy for the ground state of AlO from true potential energy curve

1978 ◽  
Vol 19 (4) ◽  
pp. 455-459 ◽  
Author(s):  
N. Sreedhara Murthy ◽  
S.P. Bagare ◽  
B. Narasimha Murthy
2007 ◽  
Vol 111 (49) ◽  
pp. 12495-12505 ◽  
Author(s):  
Alireza Shayesteh ◽  
Robert D. E. Henderson ◽  
Robert J. Le Roy ◽  
Peter F. Bernath

1970 ◽  
Vol 48 (7) ◽  
pp. 901-914 ◽  
Author(s):  
W. J. Balfour ◽  
A. E. Douglas

The absorption spectrum of the Mg2 molecule, which occurs in a furnace containing Mg vapor, has been photographed with a high resolution spectrograph. The rotational structures of the bands have been analyzed and the rotational and vibrational constants of the two states determined. The bands are found to arise from a 1Σ–1Σ transition between a very lightly bonded ground state and a more stable excited state. The R.K.R. potential energy curve of the ground state, which has a dissociation energy of 399 cm−1, has been determined. The more important constants of the ground state are ωe = 51.12 cm−1, ωexe = 1.64 cm−1, re = 3.890 Å and those of the upper state are ωe = 190.61 cm−1, ωexe = 1.14 cm−1, re = 3.082 Å.


1993 ◽  
Vol 58 (7) ◽  
pp. 1485-1490 ◽  
Author(s):  
Narayanan Rajamanickam ◽  
Natarajan Ponraj ◽  
Ponpandian Durai Ezhilarasan ◽  
Veluchamy Arumugachamy ◽  
Manuel Fernandez Gomez ◽  
...  

The potential energy curve for the electronic ground state of the SnCl molecule has been constructed by the Rydberg-Klein-Rees method in the modification by Vanderslice and collaborators. Empirical potential functions, of five parameters by Hulburt and Hirschfelder, of three parameters by Lippincott and collaborators, and that by Szoke and Baitz using the electronegativity are examined for their adequacy to represent the true curve. The five parameters by Hulburt-Hirschfelder function, U(r) = De[(1 - e-x)2 + c x3 e-2x (1 + bx)], was found to be the best fitting function and it was used for the determination of the dissociation energy. The estimated value attained for dissociation energy is 346 ± 8 kJ mol-1. For this value of dissociation energy, the estimated values for parameters and expansion coefficients are c = 0.06864, b = -0.363738, a0 = 2.759 . 103 m-1, a1 = 2.876 and a2 = 4.013, a0, a1 and a2, being the Dunham's coefficients.


2012 ◽  
Vol 116 (7) ◽  
pp. 1717-1729 ◽  
Author(s):  
Laimutis Bytautas ◽  
Nikita Matsunaga ◽  
Gustavo E. Scuseria ◽  
Klaus Ruedenberg

1999 ◽  
Vol 461-462 ◽  
pp. 351-357 ◽  
Author(s):  
Yoshi-ichi Suzuki ◽  
Takeshi Noro ◽  
Fukashi Sasaki ◽  
Hiroshi Tatewaki

From a consideration of the possible electron configurations in the NH molecule Mulliken predicted a stable 1 Ʃ + state lying about 1·9 volts above the ground state 3 Ʃ - . It is therefore to be anticipated that tran­sitions to this level from the known 1 II level will be observed simultaneously with the known 1 II → 1 ∆ transition. Mulliken estimated the shape of the potential energy curve for the 1 Ʃ + state; this corresponds to the existence of a 1 II → 1 Ʃ + band degraded to the red and lying in the neighbourhood of λ 4100. The plates from which the 1 II → 1 ∆ band was analysed were therefore examined for evidence of the 1 II → 1 Ʃ + band. After eliminating the numerous lines of the intense secondary spectrum of hydrogen which occurs in this region there remained only five unidentified lines. These are now seen to be the most intense lines of the Q branch of the λ 4502 band. The plates record the spectrum of a heavy current discharge in hydrogen containing a trace of nitrogen.


Sign in / Sign up

Export Citation Format

Share Document