Hormonal regulation of testosterone production in short-term primary culture of fetal mouse leydig cells

1984 ◽  
Vol 20 (1) ◽  
pp. 525-528 ◽  
Author(s):  
G. Pointis ◽  
B. Rao ◽  
M.-T. Latreille ◽  
L. Cedard
1984 ◽  
Vol 62 (9) ◽  
pp. 1166-1169 ◽  
Author(s):  
M. Bernier ◽  
W. Gibb ◽  
R. Collu ◽  
J. R. Ducharme

For this study, purified immature porcine Leydig cells in primary culture were used. After 2 days of culture, the cells were incubated with dexamethasone (5 × 10−9, 1 × 10−7 M) for various periods of time (3–45 h). The media were discarded and treatment was repeated with or without the addition of human chorionic gonadotropin (HCG, 10 mIU/mL) for 3 h. Dexamethasone (10−7 M) decreased testosterone production of HCG-treated cells (up to 40%) in a time-dependent fashion while the lower dose was ineffective. The effect of varying doses (10−8 and 10−6 M) of natural glucocorticoids (corticosterone, cortisol) or synthetic glucocorticoids (triamcinolone, triamcinolone acetonide, betamethasone, dexamethasone) and that of a synthetic progestin (R-5020) on cultured Leydig cells was also studied. After 18 h of preincubation, the various synthetic but not the natural steroids nor R-5020, were able to decrease testosterone production of control and HCG-treated cells by 20–40%. Of a number of other hormonal and nonhormonal substances studied at concentrations of 10−9 – 10−5 M, only lysine8-vasopressin at a concentration of 10−6 M was able to inhibit testosterone production by these cells. These results indicate that dexamethasone and other synthetic glucocorticoids, and to a lesser degree lysine8-vasopressin, may exert a direct inhibitory effect on testosterone production by purified porcine immature Leydig cells in vitro.


Steroids ◽  
1976 ◽  
Vol 28 (6) ◽  
pp. 847-866 ◽  
Author(s):  
Wilma M.O. van Beurden ◽  
Bep Roodnat ◽  
Frank H. de Jong ◽  
Eppo Mulder ◽  
Henk J. van der Molen

2013 ◽  
Vol 305 (2) ◽  
pp. E194-E204 ◽  
Author(s):  
Natasa J. Stojkov ◽  
Marija M. Janjic ◽  
Aleksandar Z. Baburski ◽  
Aleksandar I. Mihajlovic ◽  
Dragana M. Drljaca ◽  
...  

This study was designed to systematically analyze and evaluate the effects of in vivo blockade of α1-adrenergic receptors (α1-ADRs) on the stress-induced disturbance of steroidogenic machinery in Leydig cells. Parameters followed 1) steroidogenic enzymes/proteins, transcription factors, and cAMP/testosterone production; 2) the main hallmarks of stress (epinephrine, glucocorticoids); and 3) transcription profiles of ADRs and oxidases with high affinity to inactivate glucocorticoids. Results showed that sustained blockade of α1-ADRs prevented stress-induced 1) decrease of the transcripts/proteins for main steroidogenic CYPs (CYP11A1, CYP17A1); 2) decrease of Scarb1 and Hsd3b1 transcripts; 3) decrease of transcript for Nur77, one of the main activator of the steroidogenic expression; and 4) increase of Dax1 and Arr19, the main steroidogenic repressors in Leydig cells. In the same cells, the expression of steroidogenic stimulatory factor Creb1, StAR, and androgen receptor increased. In this signaling scenario, stress-induced stimulation of Adra1a/Adra1b/Adrbk1 and Hsd11b2 (the unidirectional oxidase with high affinity to inactivate glucocorticoids) was not changed. Blockade additionally stimulated stress-increased transcription of the most abundantly expressed ADRs Adra1d/Adrb1/Adrb2 in Leydig cells. In the same cells, stress-decreased testosterone production, the main marker of Leydig cells functionality, was completely prevented, while reduction of cAMP, the main regulator of androgenesis, was partially prevented. Accordingly, the presented data provide a new molecular/transcriptional base for “fight/adaptation” of steroidogenic cells and new molecular insights into the role of α1-ADRs in stress-impaired Leydig cell steroidogenesis. The results are important in term of wide use of α1-ADR selective antagonists, alone/in combination, to treat high blood pressure, nightmares associated with posttraumatic stress disorder, and disrupted sexual health.


1983 ◽  
Vol 30 (1) ◽  
pp. 73-84 ◽  
Author(s):  
F. Haour ◽  
M.C. Bommelaer ◽  
M. Bernier ◽  
P. Sanchez ◽  
J. Saez ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document