hormonal regulation
Recently Published Documents


TOTAL DOCUMENTS

3152
(FIVE YEARS 273)

H-INDEX

110
(FIVE YEARS 7)

2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Kinga Dziurka ◽  
Michał Dziurka ◽  
Ewa Muszyńska ◽  
Ilona Czyczyło-Mysza ◽  
Marzena Warchoł ◽  
...  

AbstractA critical step in the production of doubled haploids is a conversion of the haploid embryos into plants. Our study aimed to recognize the reasons for the low germination rate of Avena sativa haploid embryos obtained by distant crossing with maize. Oat cultivars of ‘Krezus’ and ‘Akt’ were investigated regarding embryo anatomy, the endogenous phytohormone profiles, and antioxidant capacity. The zygotic embryos of oat were used as a reference. It was found that twenty-one days old haploid embryos were smaller and had a less advanced structure than zygotic ones. Morphology and anatomy modifications of haploid embryos were accompanied by extremely low levels of endogenous auxins. Higher levels of cytokinins, as well as tenfold higher cytokinin to auxin ratio in haploid than in zygotic embryos, may suggest an earlier stage of development of these former. Individual gibberellins reached higher values in ‘Akt’ haploid embryos than in the respective zygotic ones, while the differences in both types of ‘Krezus’ embryos were not noticed. Additionally to the hormonal regulation of haploid embryogenesis, the poor germination of oat haploid embryos can be a result of the overproduction of reactive oxygen species, and therefore higher levels of low molecular weight antioxidants and stress hormones.


2022 ◽  
Vol 23 (1) ◽  
Author(s):  
G. Krivoshein ◽  
E. A. Tolner ◽  
van den Maagdenberg AMJM ◽  
R. A. Giniatullin

Abstract Background Migraine is a common brain disorder that predominantly affects women. Migraine pain seems mediated by the activation of mechanosensitive channels in meningeal afferents. Given the role of transient receptor potential melastatin 3 (TRPM3) channels in mechanical activation, as well as hormonal regulation, these channels may play a role in the sex difference in migraine. Therefore, we investigated whether nociceptive firing induced by TRPM3 channel agonists in meningeal afferents was different between male and female mice. In addition, we assessed the relative contribution of mechanosensitive TRPM3 channels and that of mechanosensitive Piezo1 channels and transient receptor potential vanilloid 1 (TRPV1) channels to nociceptive firing relevant to migraine in both sexes. Methods Ten- to 13-week-old male and female wildtype (WT) C57BL/6 J mice were used. Nociceptive spikes were recorded directly from nerve terminals in the meninges in the hemiskull preparations. Results Selective agonists of TRPM3 channels profoundly activated peripheral trigeminal nerve fibres in mouse meninges. A sex difference was observed for nociceptive firing induced by either PregS or CIM0216, both agonists of TRPM3 channels, with the induced firing being particularly prominent for female mice. Application of Yoda1, an agonist of Piezo1 channels, or capsaicin activating TRPV1 channels, although also leading to increased nociceptive firing of meningeal fibres, did not reveal a sex difference. Cluster analyses of spike activities indicated a massive and long-lasting activation of TRPM3 channels with preferential induction of large-amplitude spikes in female mice. Additional spectral analysis revealed ​a dominant contribution of spiking activity in the α- and β-ranges following TRPM3 agonists in female mice. Conclusions Together, we revealed a specific mechanosensitive profile of nociceptive firing in females and suggest TRPM3 channels as a potential novel candidate for the generation of migraine pain, with particular relevance to females.


2022 ◽  
pp. 813-859
Author(s):  
Yves Nys ◽  
Joel Gautron ◽  
Alejandro B. Rodriguez-Navarro ◽  
Maxwell Hincke

Author(s):  
Elizabeth H. Holt ◽  
Beatrice Lupsa ◽  
Grace S. Lee ◽  
Hanan Bassyouni ◽  
Harry E. Peery

Author(s):  
Elizabeth H. Holt ◽  
Beatrice Lupsa ◽  
Grace S. Lee ◽  
Hanan Bassyouni ◽  
Harry E. Peery

2021 ◽  
Vol 29 (4) ◽  
pp. 247-261
Author(s):  
Michèle Braconnier ◽  
Gabriela González-Mariscal ◽  
Jella Wauters ◽  
Sabine G. Gebhardt-Henrich

The neuroendocrine regulation of rabbit maternal behaviour has been explored in detail. However, little is yet known about the hormonal regulation of aggression in concurrently pregnant-lactating does, a reproductive condition that prevails during group housing of rabbits on farms. Therefore, in this study we determined the relation between a) the levels of progesterone, testosterone, and oestradiol during lactation; b) the anogenital distance at artificial insemination; and c) the timing of grouping with the intensity of agonistic behaviour, published previously. We performed four consecutive trials, where three groups of eight does each were artificially inseminated on day 10 postpartum (pp) and grouped on either day 12, 18 or 22 pp. Using Dipetalogaster maxima, a reduviid blood-sucking bug, we collected blood samples during the pregnant-lactating phase (days 13, 15, 17, 19, 21, 23 pp) on one or two randomly chosen does per treatment group. Testosterone levels varied little across the pregnant-lactating phase, agreeing with results from pregnant-only rabbits, while progesterone levels increased from day 3 (=13 dpp) to day 7 (=17 dpp) and remained unchanged until day 13 (=23 dpp) of pregnancy. All oestradiol concentrations fell below the limit of detection. Overall, all concentrations were slightly lower in comparison to rabbit studies with pregnantonly does. The agonistic behaviour was not related to the respective hormonal concentrations at grouping. In conclusion, the time point of grouping does after artificial insemination (AI) in the semi-group housing system only had a weak influence on aggression and the hormonal profile did not indicate an optimum time for grouping.


Author(s):  
Renata Finelli ◽  
Filomena Mottola ◽  
Ashok Agarwal

Alcohol abuse disorder is a serious condition, implicating more than 15 million people aged 12 years and older in 2019 in the United States. Ethanol (or ethyl alcohol) is mainly oxidized in the liver, resulting in the synthesis of acetaldehyde and acetate, which are toxic and carcinogenic metabolites, as well as in the generation of a reductive cellular environment. Moreover, ethanol can interact with lipids, generating fatty acid ethyl esters and phosphatidylethanol, which interfere with physiological cellular pathways. This narrative review summarizes the impact of excessive alcohol consumption on male fertility by describing its metabolism and how ethanol consumption may induce cellular damage. Furthermore, the impact of alcohol consumption on hormonal regulation, semen quality, and genetic and epigenetic regulations is discussed based on evidence from animal and human studies, focusing on the consequences on the offspring. Finally, the limitations of the current evidence are discussed. Our review highlights the association between chronic alcohol consumption and poor semen quality, mainly due to the development of oxidative stress, as well as its genotoxic impact on hormonal regulation and DNA integrity, affecting the offspring’s health. New landscapes of investigation are proposed for the identification of molecular markers for alcohol-associated infertility, with a focus on advanced OMICS-based approaches applied to the analysis of semen samples.


Author(s):  
Jonas Žiauka ◽  
Greta Striganavičiūtė ◽  
Iwona Szyp-Borowska ◽  
Sigutė Kuusienė ◽  
Marzena Niemczyk

Phenotypic plasticity in response to adverse conditions determines plant productivity and survival. The aim of this study was to test if two highly productive Populus genotypes, characterized by different in vitro etiolation patterns, differ also in their responses to hormones gibberellin (GA) and abscisic acid (ABA), and to a GA biosynthesis inhibitor paclobutrazol (PBZ). The experiments on shoot cultures of ‘Hybrida 275’ (abbr. H275; Populus maximowiczii × P. trichocarpa) and IBL 91/78 (Populus tremula × P. alba) were conducted either by modulating the physical in vitro environment or by adding specific chemicals to the nutrient medium. Our results show that there are significant differences between the studied genotypes in environmental and hormonal regulation of growth responses. The genotype H275, which responded to darkness with PBZ-inhibitable shoot elongation, was unable to recover its growth after treatment with ABA. In contrast, the genotype IBL 91/78, whose shoot elongation was not affected either by darkness or PBZ treatment, recovered so well after the ABA treatment that, when rooted subsequently, it developed longer shoots and roots than without ABA treatment. Our results indicate that GA catabolism and repressive signaling provide an important pathway to control growth and physiological adaptation in response to immediate or impending adverse conditions. These observations can help breeders define robust criteria for identifying genotypes with high resistance and productivity and highlight where genotypes exhibit susceptibility to stress.


2021 ◽  
Vol 12 ◽  
Author(s):  
Eric de Castro Tobaruela ◽  
Bruna Lima Gomes ◽  
Vanessa Caroline de Barros Bonato ◽  
Elis Silva de Lima ◽  
Luciano Freschi ◽  
...  

As the auxin-ethylene interaction in climacteric fruit ripening has been highlighted, the hormonal regulation of aroma changes in climacteric fruits requires clarification. The influence of both phytohormones on the volatile organic compound (VOC) metabolism was evaluated during tomato (Solanum lycopersicum L.) fruit ripening. Tomato fruits cv. Micro-Tom and Sweet Grape at the mature green stage were randomly grouped according to treatment with ethylene (ETHY), auxin (IAA), or both (ETHY + IAA). At middle ripening, Micro-Tom ETHY + IAA fruits present VOC profiles similar to those of ETHY fruits, while Sweet Grape presents VOC profiles closer to those of IAA fruits. At full ripeness, Micro-Tom and Sweet Grape ETHY + IAA fruits show profiles closer to those of IAA fruits, suggesting that the auxin overlaps the ethylene effects. Aroma compounds positively correlated with consumer preferences (2-isobutylthiazole, 6-methyl-5-hepten-2-one, and others) are identified in both cultivars and have their contents affected by both hormone treatments. The transcription of genes related to the biosynthesis of important tomato VOCs that have fatty-acid and carotenoid precursors evidences their regulation by both plant hormones. Additionally, the results indicate that the observed effects on the VOC metabolism are not restricted to the Micro-Tom cultivar, as these are also observed in the Sweet Grape cultivar. In conclusion, ethylene and auxin directly regulate the metabolic pathways related to VOC formation, impacting tomato aroma formation during ripening since Micro-Tom fruits apparently at the same maturation stage have different aromas.


Sign in / Sign up

Export Citation Format

Share Document