An inverted metamorphic field gradient in the central Brooks Range, Alaska and implications for exhumation of high-pressure/low-temperature metamorphic rocks

Lithos ◽  
1994 ◽  
Vol 33 (1-3) ◽  
pp. 67-83 ◽  
Author(s):  
B. Patrick ◽  
A.B. Till ◽  
W.S. Dinklage
2004 ◽  
Vol 46 (3) ◽  
pp. 641-669 ◽  
Author(s):  
GAËTAN RIMMELÉ ◽  
TEDDY PARRA ◽  
BRUNO GOFFÉ ◽  
ROLAND OBERHÄNSLI ◽  
LAURENT JOLIVET ◽  
...  

Solid Earth ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 1335-1355
Author(s):  
Miguel Cisneros ◽  
Jaime D. Barnes ◽  
Whitney M. Behr ◽  
Alissa J. Kotowski ◽  
Daniel F. Stockli ◽  
...  

Abstract. Retrograde metamorphic rocks provide key insights into the pressure–temperature (P–T) evolution of exhumed material, and resultant P–T constraints have direct implications for the mechanical and thermal conditions of subduction interfaces. However, constraining P–T conditions of retrograde metamorphic rocks has historically been challenging and has resulted in debate about the conditions experienced by these rocks. In this work, we combine elastic thermobarometry with oxygen isotope thermometry to quantify the P–T evolution of retrograde metamorphic rocks of the Cycladic Blueschist Unit (CBU), an exhumed subduction complex exposed on Syros, Greece. We employ quartz-in-garnet and quartz-in-epidote barometry to constrain pressures of garnet and epidote growth near peak subduction conditions and during exhumation, respectively. Oxygen isotope thermometry of quartz and calcite within boudin necks was used to estimate temperatures during exhumation and to refine pressure estimates. Three distinct pressure groups are related to different metamorphic events and fabrics: high-pressure garnet growth at ∼1.4–1.7 GPa between 500–550 ∘C, retrograde epidote growth at ∼1.3–1.5 GPa between 400–500 ∘C, and a second stage of retrograde epidote growth at ∼1.0 GPa and 400 ∘C. These results are consistent with different stages of deformation inferred from field and microstructural observations, recording prograde subduction to blueschist–eclogite facies and subsequent retrogression under blueschist–greenschist facies conditions. Our new results indicate that the CBU experienced cooling during decompression after reaching maximum high-pressure–low-temperature conditions. These P–T conditions and structural observations are consistent with exhumation and cooling within the subduction channel in proximity to the refrigerating subducting plate, prior to Miocene core-complex formation. This study also illustrates the potential of using elastic thermobarometry in combination with structural and microstructural constraints, to better understand the P–T-deformation conditions of retrograde mineral growth in high-pressure–low-temperature (HP/LT) metamorphic terranes.


2021 ◽  
pp. 120447
Author(s):  
Eirini M. Poulaki ◽  
Daniel F. Stockli ◽  
Megan E. Flansburg ◽  
Michelle L. Gevedon ◽  
Lisa D. Stockli ◽  
...  

2014 ◽  
Vol 185 (2) ◽  
pp. 93-114 ◽  
Author(s):  
Jean-Marc Lardeaux

AbstractIn this paper we review and discuss, in a synthetic historical way, the main results obtained on Alpine metamorphism in the western Alps. First, we describe the finite metamorphic architecture of the western Alps and discuss its relationships with subduction and collision processes. Second, we portray the progressive metamorphic evolution through time and space with the presentation of 5 metamorphic maps corresponding to critical orogenic periods, namely 85-65 Ma, 60-50 Ma, 48-40 Ma, 38-33 Ma and 30-20 Ma. We underline the lack of temporal data on high-pressure/low-temperature metamorphic rocks as well as the severe uncertainties on the sizes of rock units that have recorded the same metamorphic history (i.e. coherent P-T-t/deformation trajectories). We discuss the role of subduction-driven metamorphism in ocean-derived protoliths and the conflicting models that account for the diachrony of continental subductions in the western Alps.


Sign in / Sign up

Export Citation Format

Share Document