Deciphering orogeny: a metamorphic perspective. Examples from European Alpine and Variscan belts

2014 ◽  
Vol 185 (2) ◽  
pp. 93-114 ◽  
Author(s):  
Jean-Marc Lardeaux

AbstractIn this paper we review and discuss, in a synthetic historical way, the main results obtained on Alpine metamorphism in the western Alps. First, we describe the finite metamorphic architecture of the western Alps and discuss its relationships with subduction and collision processes. Second, we portray the progressive metamorphic evolution through time and space with the presentation of 5 metamorphic maps corresponding to critical orogenic periods, namely 85-65 Ma, 60-50 Ma, 48-40 Ma, 38-33 Ma and 30-20 Ma. We underline the lack of temporal data on high-pressure/low-temperature metamorphic rocks as well as the severe uncertainties on the sizes of rock units that have recorded the same metamorphic history (i.e. coherent P-T-t/deformation trajectories). We discuss the role of subduction-driven metamorphism in ocean-derived protoliths and the conflicting models that account for the diachrony of continental subductions in the western Alps.

2014 ◽  
Vol 185 (5) ◽  
pp. 281-310 ◽  
Author(s):  
Jean-Marc Lardeaux

AbstractIn this paper we review and discuss, in a synthetic historical way, the main results obtained on Variscan metamorphism in the French Massif Central. First, we describe the pre-orogenic architecture of the French Massif Central on the base of available lithostratigraphic and geochemical constraints. Second, we portray the progressive metamorphic evolution through time and space with the presentation of 6 metamorphic maps corresponding to critical orogenic periods, namely 430–400 Ma, 400–370 Ma, 370–360 Ma, 360–345 Ma, 340–325 Ma and 320–290 Ma. We discuss the role of multiple subductions in orogeny, the metamorphic effects of continental collision (i.e. regional development of intermediate-pressure metamorphic series) as well as the links between post-thickening tectonics and the regional development of low-pressure metamorphic series coeval with crustal partial melting. As it was the case for the western Alps, we emphasize the lack of temporal data on high-pressure/low-temperature metamorphic rocks as well as the uncertainties on the sizes of rock units that have recorded the same metamorphic history (i.e. coherent P-T-t/deformation trajectories). Finally, we underline the main differences and similarities between the metamorphic evolutions of the western Alps and the French Massif Central.


Minerals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 411
Author(s):  
Paola Tartarotti ◽  
Silvana Martin ◽  
Andrea Festa ◽  
Gianni Balestro

Ophiolites of the Alpine belt derive from the closure of the Mesozoic Tethys Ocean that was interposed between the palaeo-Europe and palaeo-Adria continental plates. The Alpine orogeny has intensely reworked the oceanic rocks into metaophiolites with various metamorphic imprints. In the Western Alps, metaophiolites and continental-derived units are distributed within two paired bands: An inner band where Alpine subduction-related high-pressure (HP) metamorphism is preserved, and an outer band where blueschist to greenschist facies recrystallisation due to the decompression path prevails. The metaophiolites of the inner band are hugely important not just because they provide records of the prograde tectonic and metamorphic evolution of the Western Alps, but also because they retain the signature of the intra-oceanic tectono-sedimentary evolution. Lithostratigraphic and petrographic criteria applied to metasediments associated with HP metaophiolites reveal the occurrence of distinct tectono-stratigraphic successions including quartzites with marbles, chaotic rock units, and layered calc schists. These successions, although sliced, deformed, and superposed in complex ways during the orogenic stage, preserve remnants of their primary depositional setting constraining the pre-orogenic evolution of the Jurassic Tethys Ocean.


Geosphere ◽  
2020 ◽  
Vol 16 (4) ◽  
pp. 953-968 ◽  
Author(s):  
Atsushi Noda ◽  
Hiroaki Koge ◽  
Yasuhiro Yamada ◽  
Ayumu Miyakawa ◽  
Juichiro Ashi

Abstract Sandy trench-fill sediments at accretionary margins are commonly scraped off at the frontal wedge and rarely subducted to the depth of high-pressure (HP) metamorphism. However, some ancient exhumed accretionary complexes are associated with high-pressure–low-temperature (HP-LT) metamorphic rocks, such as psammitic schists, which are derived from sandy trench-fill sediments. This study used sandbox analogue experiments to investigate the role of seafloor topography in the transport of trench-fill sediments to depth during subduction. We conducted two different types of experiments, with or without a rigid topographic high (representing a seamount). We used an undeformable backstop that was unfixed to the side wall of the apparatus to allow a seamount to be subducted beneath the overriding plate. In experiments without a seamount, progressive thickening of the accretionary wedge pushed the backstop down, leading to a stepping down of the décollement, narrowing of the subduction channel, and underplating of the wedge with subducting sediment. In contrast, in experiments with a topographic high, the subduction of the topographic high raised the backstop, leading to a stepping up of the décollement and widening of the subduction channel. These results suggest that the subduction of stiff topographic relief beneath an inflexible overriding plate might enable trench-fill sediments to be deeply subducted and to become the protoliths of HP-LT metamorphic rocks.


1980 ◽  
Vol 43 (332) ◽  
pp. 979-984 ◽  
Author(s):  
C. Mevel ◽  
J. R. Kienast

SummarySmall ophiolitic bodies are enclosed in the calcschists of the Piemont zone (western Alps). They have been metamorphosed in the blueschist facies during the alpine orogeny. One of them, the Roche Noire massif, includes gabbro breccias. The magmatic mineralogy of the gabbro was plagioclase + clinopyroxene + minor chromite. There was no chemical homogenization during metamorphism because of the lack of penetrative deformation and on the site of previous chromites, chromium-rich high-pressure and low-temperature minerals (jadeite, phengite, pumpellyite, and lawsonite) were formed. The Al ⇌ Cr substitution does not affect other P- and T-dependent substitutions.


2015 ◽  
Vol 57 (5-8) ◽  
pp. 943-977 ◽  
Author(s):  
Kennet E. Flores ◽  
Susanne Skora ◽  
Celine Martin ◽  
George E. Harlow ◽  
Dionisio Rodríguez ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document