Further comments on “experimental constitutive relations for the high temperature deformation of a PbSn eutectic alloy”

1983 ◽  
Vol 57 (2) ◽  
pp. 257-260
Author(s):  
K.A. Padmanabhan
Coatings ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 52 ◽  
Author(s):  
Qiqi Yu ◽  
Daosheng Wen ◽  
Shouren Wang ◽  
Beibei Kong ◽  
Shuxu Wu ◽  
...  

To investigate the effect of hydrogen on the high-temperature deformation behaviors of TiAl-based alloys, the high-temperature tensile experiment was carried out on a Ti–45Al–9Nb (at.%) alloy with the H content of 0 and 0.8 at.%, respectively. Then, the effect of hydrogen on the high-temperature mechanical properties of the as-cast alloy was studied, the constitutive relations among stress, temperature, and strain rate were established, and the microstructure was analyzed. The results indicated that, compared with the unhydrogenated alloy, the flow stress of the hydrogenated alloy was significantly reduced, and the peak stress of the hydrogenated alloy decreased by (16.28 ± 0.17)% deformed at 1150 °C/0.0004 s−1. Due to the presence of hydride (TiAl)Hx in the alloy, the elongation showed a decline trend with increasing strain rate at the same deformation temperature. Compared with the unhydrogenated alloy, the elongation of the hydrogenated alloy reduced by (26.05 ± 0.45)% (0.0004 s−1), (23.49 ± 0.38)% (0.001 s−1), and (14.23 ± 0.19)% (0.0025 s−1), respectively, indicating that 0.8 at.% H softened the Ti–45Al–9Nb alloy and reduced the high-temperature plastic deformability. Under the same deformation condition, the deformation extent of the hydrogenated alloy was less than that of the unhydrogenated alloy. There were more residual lamellae in the hydrogenated alloy, and the extent of dynamic recrystallization was lower than that of the unhydrogenated alloy.


2008 ◽  
Vol 57 (6) ◽  
pp. 543-547
Author(s):  
Takuma WADA ◽  
Takahiro KAKEI ◽  
Hiroyuki HORII ◽  
Takeshi SHIONO ◽  
Yasunori OKAMOTO

Sign in / Sign up

Export Citation Format

Share Document