processing parameters
Recently Published Documents





Materials ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 575
Mariola Saternus ◽  
Tomasz Merder

Obtaining high-quality aluminum is associated with the use of an effective method of refining, which is argon-purging, in which gas bubbles are introduced into the liquid metal by means of rotary impellers. Various rotary impellers are used in the industry; however, if a newly designed impeller is constructed, it should be tested prior to industrial use. For this purpose, physical modeling is used, which enables the investigation of the phenomena occurring during refining and the selection of optimal processing parameters without costly research carried out in the industry. The newly designed rotary impeller was tested on the physical model of a URO-200 batch reactor. The flow rate of refining gas was: 10, 15 and 20 dm3·min−1, whereas rotary impeller speed was 300, 400 and 500 rpm. The research consists of a visualization test showing the schemes of the gas bubbles’ dispersion level in the liquid metal and experiments for removing oxygen from water, which is an analogue of removing hydrogen from aluminum.

2022 ◽  
Junjie Xiong ◽  
Han Wang ◽  
Xingzi Lan ◽  
Yaqi Wang ◽  
Zixu Wang ◽  

Abstract Many strategies have been adopted to engineer bone-ligament interface, which is of great value to both the tissue regeneration and the mechanism understanding underlying interface regeneration. However, how to recapitulate the complexity and heterogeneity of the native bone-ligament interface including the structural, cellular and mechanical gradients is still challenging. In this work, a bioinspired grid-crimp micropattern fabricated by melt electrospinning writing (MEW) was proposed to mimic the native structure of bone-ligament interface. The printing strategy of crimped fiber micropattern was developed and the processing parameters were optimized, which were used to mimic the crimp structure of the collagen fibrils in ligament. The guidance effect of the crimp angle and fiber spacing on the orientation of fibroblasts was studied, and both of them showed different levels of cell alignment effect.. MEW grid micropatterns with different fiber spacings were fabricated as bone region. Both the alkaling phosphatase activity and calcium mineralization results demonstrated the higher osteoinductive ability of the MEW grid structures, especially for that with smaller fiber spacing. The combined grid-crimp micropatterns were applied for the co-culture of fibroblasts and osteoblasts. The results showed that more cells were observed to migrate into the in-between interface region for the pattern with smaller fiber spacing, suggested the faster migration speed of cells. Finally, a cylindrical triphasic scaffold was successfully generated by rolling the grid-crimp micropatterns up, showing both structural and mechanical similarity to the native bone-ligament interface. In summary, the proposed strategy is reliable to fabricate grid-crimp triphasic micropatterns with controllable structural parameters to mimic the native bone-to-ligament structure, and the generated 3D scaffold shows great potential for the further bone-ligament interface tissue engineering.

Materials ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 544
Lehlogonolo Rudolf Kanyane ◽  
Abimbola Patricia Idowu Popoola ◽  
Sisa Pityana ◽  
Monnamme Tlotleng

The lives of many people around the world are impaired and shortened mostly by cardiovascular diseases (CVD). Despite the fact that medical interventions and surgical heart transplants may improve the lives of patients suffering from cardiovascular disease, the cost of treatments and securing a perfect donor are aspects that compel patients to consider cheaper and less invasive therapies. The use of synthetic biomaterials such as titanium-based implants are an alternative for cardiac repair and regeneration. In this work, an in situ development of Ti-Al-xNb alloys were synthesized via laser additive manufacturing for biomedical application. The effect of Nb composition on Ti-Al was investigated. The microstructural evolution was characterized using a scanning electron microscope (SEM) equipped with energy dispersive spectroscopy (EDS). A potentiodynamic polarization technique was utilized to investigate the corrosion behavior of TiAl-Nb in 3.5% NaCl. The microhardness and corrosion behaviour of the synthesized Ti-Al-Nb alloys were found to be dependent on laser-processing parameters. The microhardness performance of the samples increased with an increase in the Nb feed rate to the Ti-Al alloy system. Maximum microhardness of 699.8 HVN was evident at 0.061 g/min while at 0.041 g/min the microhardness was 515.8 HVN at Nb gas carrier of 1L/min, respectively.

Materials ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 530
Zachary A. Young ◽  
Meelap M. Coday ◽  
Qilin Guo ◽  
Minglei Qu ◽  
S. Mohammad H. Hojjatzadeh ◽  

Selective laser melting (SLM) additive manufacturing (AM) exhibits uncertainties, where variations in build quality are present despite utilizing the same optimized processing parameters. In this work, we identify the sources of uncertainty in SLM process by in-situ characterization of SLM dynamics induced by small variations in processing parameters. We show that variations in the laser beam size, laser power, laser scan speed, and powder layer thickness result in significant variations in the depression zone, melt pool, and spatter behavior. On average, a small deviation of only ~5% from the optimized/reference laser processing parameter resulted in a ~10% or greater change in the depression zone and melt pool geometries. For spatter dynamics, small variation (10 μm, 11%) of the laser beam size could lead to over 40% change in the overall volume of the spatter generated. The responses of the SLM dynamics to small variations of processing parameters revealed in this work are useful for understanding the process uncertainties in the SLM process.

Pharmaceutics ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 164
Catarina S. Miranda ◽  
Ana Francisca G. Silva ◽  
Sílvia M. M. A. Pereira-Lima ◽  
Susana P. G. Costa ◽  
Natália C. Homem ◽  

Electrospinning and wet-spinning have been recognized as two of the most efficient and promising techniques for producing polymeric fibrous constructs for a wide range of applications, including optics, electronics, food industry and biomedical applications. They have gained considerable attention in the past few decades because of their unique features and tunable architectures that can mimic desirable biological features, responding more effectively to local demands. In this review, various fiber architectures and configurations, varying from monolayer and core-shell fibers to tri-axial, porous, multilayer, side-by-side and helical fibers, are discussed, highlighting the influence of processing parameters in the final constructs. Additionally, the envisaged biomedical purposes for the examined fiber architectures, mainly focused on drug delivery and tissue engineering applications, are explored at great length.

2022 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Chitralekha Nahar ◽  
Pavan Kumar Gurrala

Purpose The thermal behavior at the interfaces (of the deposited strands) during fused filament fabrication (FFF) technique strongly influences bond formation and it is a time- and temperature-dependent process. The processing parameters affect the thermal behavior at the interfaces and the purpose of the paper is to simulate using temperature-dependent (nonlinear) thermal properties rather than constant properties. Design/methodology/approach Nonlinear temperature-dependent thermal properties are used to simulate the FFF process in a simulation software. The finite-element model is first established by comparing the simulation results with that of analytical and experimental results of acrylonitrile butadiene styrene and polylactic acid. Strand temperature and time duration to reach critical sintering temperature for the bond formation are estimated for one of the deposition sequences. Findings Temperatures are estimated at an interface and are then compared with the experimental results, which shows a close match. The results of the average time duration (time to reach the critical sintering temperature) of strands with the defined deposition sequences show that the first interface has the highest average time duration. Varying processing parameters show that higher temperatures of the extruder and envelope along with higher extruder diameter and lower convective heat transfer coefficient will have more time available for bonding between the strands. Originality/value A novel numerical model is developed using temperature-dependent (nonlinear) thermal properties to simulate FFF processes. The model estimates the temperature evolution at the strand interfaces. It helps to evaluate the time duration to reach critical sintering temperature (temperature above which the bond formation occurs) as it cools from extrusion temperature.

Nanomaterials ◽  
2022 ◽  
Vol 12 (2) ◽  
pp. 232
Luka Hribar ◽  
Peter Gregorčič ◽  
Matej Senegačnik ◽  
Matija Jezeršek

In this paper, we investigate the influence of the following parameters: pulse duration, pulse repetition rate, line-to-line and pulse-to-pulse overlaps, and scanning strategy on the ablation of AISI 316L steel and CuZn37 brass with a nanosecond, 1064-nm, Yb fiber laser. The results show that the material removal rate (MRR) increases monotonically with pulse duration up to the characteristic repetition rate (f0) where pulse energy and average power are maximal. The maximum MRR is reached at a repetition rate that is equal or slightly higher as f0. The exact value depends on the correlation between the fluence of the laser pulses and the pulse repetition rate, as well as on the material properties of the sample. The results show that shielding of the laser beam by plasma and ejected material plays an important role in reducing the MRR. The surface roughness is mainly influenced by the line-to-line and the pulse-to-pulse overlaps, where larger overlap leads to lower roughness. Process optimization indicates that while operating with laser processing parameters resulting in the highest MRR, the best ratio between the MRR and surface roughness appears at ~50% overlap of the laser pulses, regardless of the material being processed.

Polymers ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 278
Shiou Xuan Tan ◽  
Hwai Chyuan Ong ◽  
Andri Andriyana ◽  
Steven Lim ◽  
Yean Ling Pang ◽  

Bioplastic has been perceived as a promising candidate to replace petroleum-based plastics due to its environment-friendly and biodegradable characteristics. This study presents the chitosan-reinforced, starch-based bioplastic film prepared by the solution casting and evaporation method. The effects of processing parameters, i.e., starch concentration, glycerol loading, process temperature and chitosan loading on mechanical properties were examined. Optimum tensile strength of 5.19 MPa and elongation at break of 44.6% were obtained under the combined reaction conditions of 5 wt.% starch concentration, 40 wt.% glycerol loading, 20 wt.% chitosan loading and at a process temperature of 70 °C. From the artificial neural network (ANN) modeling, the coefficient of determination (R2) for tensile strength and elongation at break were found to be 0.9955 and 0.9859, respectively, which proved the model had good fit with the experimental data. Interaction and miscibility between starch and chitosan were proven through the peaks shifting to a lower wavenumber in FTIR and a reduction of crystallinity in XRD. TGA results suggested the chitosan-reinforced starch-based bioplastic possessed reasonable thermal stability under 290 °C. Enhancement in water resistance of chitosan-incorporated starch-based bioplastic film was evidenced with a water uptake of 251% as compared to a 302% registered by the pure starch-based bioplastic film. In addition, the fact that the chitosan-reinforced starch-based bioplastic film degraded to 52.1% of its initial weight after 28 days suggests it is a more sustainable alternative than the petroleum-based plastics.

Metals ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 132
Doina Raducanu ◽  
Vasile Danut Cojocaru ◽  
Anna Nocivin ◽  
Radu Hendea ◽  
Steliana Ivanescu ◽  

The aim of the present paper is to apply the mechanical alloying process to obtain from powder components a new biodegradable Mg-based alloy powder from the system Mg-xZn-Zr-Ca, with high biomechanical and biochemical performance. Various processing parameters for mechanical alloying have been experimented with the ultimate goal to establish an efficient processing route for the production of small biodegradable parts for the medical domain. It has been observed that for the same milling parameters, the composition of the powders has influenced the powder size and shape. On the other hand, for the same composition, the highest experimented milling speed and time conduct to finer powder particles, almost round-shaped, without pores or various inclusions. The most uniform size has been obtained for the powder sample with 10 wt.%Zn. These powders were finally processed by selective laser melting, an additive manufacturing technology, to obtain a homogeneous experimental sample, without cracking, for future more systematical trials.

2022 ◽  
Vol 327 ◽  
pp. 263-271
Gan Li ◽  
Jin Kang Peng ◽  
En Jie Dong ◽  
Juan Chen ◽  
Hong Xing Lu ◽  

There is a strong demand for high-strength aluminum alloys such as 7075 aluminum alloy to be applied for rheocasting industry. The overriding challenge for the application of 7075 alloy is that its solid fraction is very sensitive to the variation of temperature in the range of 40% ~ 50% solid fraction, which inevitably narrows down the processing window of slurry preparation for rheocasting process. Therefore, in this work, a novel method to prepare semi-solid slurry of the 7075 alloy, so called Enthalpy Control Process (ECP), has been developed to grapple with this issue. In the method, a medium-frequency electromagnetic field was applied on the outside of slurry preparation crucible to reduce the temperature difference throughout the slurry. The effect of processing parameters, including heating power, heating time, the initial temperature of crucible and melt weight, on the temperature field of the semi-solid slurry was investigated. The results exhibited that although the all the processing parameters had a great influence on the average temperature of the slurry, heating time was the main factor affecting the maximum temperature difference of the slurry. The optimum processing parameters during ECP were found to be heating power of 7.5 KW, the initial temperature of crucible of 30 °C ~ 200 °C and melt weight of 2 kg.

Sign in / Sign up

Export Citation Format

Share Document