Gas and aerosol sampling from high temperature, transient pressure environments

1990 ◽  
Vol 118 (2) ◽  
pp. 219-226
Author(s):  
V.J. Novick ◽  
M.J. Pilat
2021 ◽  
Vol 155 ◽  
pp. 108160
Author(s):  
Ankit R. Singh ◽  
Andallib Tariq ◽  
Pradeep K. Sahoo ◽  
Prasanna Majumdar ◽  
Deb Mukhopadhyay

2009 ◽  
pp. 134-134-16 ◽  
Author(s):  
A Sawatzky ◽  
GA Ledoux ◽  
S Jones

2012 ◽  
Vol 46 (2) ◽  
pp. 444-456 ◽  
Author(s):  
Rajendra S. Ghadwal ◽  
Ramachandran Azhakar ◽  
Herbert W. Roesky

2021 ◽  
Author(s):  
Khafiz Muradov ◽  
Akindolu Dada ◽  
Sultan Djabbarov

Abstract Pressure Transient Analysis (PTA) methodology has long enabled well testing to become a standard routine. Modern, well and reservoir monitoring and management practices are now unthinkable without the well test-derived estimates of KH products, skin factors, radii of reservoir boundaries, etc. Temperature data, measured together with the pressure, is widely available. Multiple methods for Temperature Transient Analysis (TTA) have also been developed, but have not yet gained due recognition. Few examples of a systematic application of PTA and TTA (or, in general, Pressure and Temperature Transient Analysis PTTA) on a field scale have been published. Given that the TTA radius of investigation is much smaller than that for PTA, the TTA tends to explore the near-wellbore properties including the near-wellbore permeability profile, depth of damage, multi-layer parameters, fluid properties, etc. This complements the far-field estimates made by PTA, resulting in the PTTA providing a more holistic and complete picture of the state of the reservoir and fluids around the wellbore. This work demonstrates a case study of a systematic application of PTTA methods to wells in a green, oil field. The wells are equipped with a state-of-the-art, downhole, permanent monitoring equipment. A user-friendly, bespoke toolbox has been developed to carry out PTTA analysis in this field. Dozens of transient events that occurred in the first few years of the field production life have been analyzed using PTTA. There are multiple examples of this PTTA analysis demonstrating improved characterization of the reservoir, near-wellbore, fluid, and multi-layer properties. This work will be insightful to those looking to find out what additional, useful information (like reservoir and fluid properties) can be extracted from the traditional well-test, transient pressure and temperature measurements at no extra cost.


Sign in / Sign up

Export Citation Format

Share Document