temperature transient
Recently Published Documents


TOTAL DOCUMENTS

135
(FIVE YEARS 19)

H-INDEX

16
(FIVE YEARS 0)

2021 ◽  
Author(s):  
Mohammed Al-Hashemi ◽  
Daria Spivakovskaya ◽  
Evert Moes ◽  
Peter in ‘t Panhuis ◽  
Gijs Hemink ◽  
...  

Abstract Fiber Optic Systems, such as Distributed Temperature Sensing (DTS), have been used for wellbore surveillance for more than two decades. One of the traditional applications of DTS is injectivity profiling, both for hydraulically fractured and non-fractured wells. There is a long history of determining injectivity profiles using temperature profiles, usually by analyzing warm-back data with largely pure heat conduction models or by employing a so-called "hot-slug" approach that requires tracking of a temperature transient that arises at the onset of injection. In many of these attempts there is no analysis performed for the key influencing physical factors that could create significant ambiguity in the interpretation results. Among such factors we will consider in detail is the possible impact of cross-flow during the early warm-back stage, but also the temperature transient signal that is related to the location of the fiber-optic sensing cable behind the casing when the fast transient data are used for interpretation such as the "hot slug" during re-injection. In this paper it will be shown that despite all such potential complications, the high frequency and quality of the transient data that can be obtained from a continuous DTS measurement allow for a highly reliable and robust evaluation of the injectivity profile. The well-known challenge of the ambiguity of the interpretation, produced by the interpretation methods that are conventionally used, is overcome using the innovative "Pressure Rate Temperature Transient Analysis" method that takes maximum use of the complete DTS transient data set and all other available data at the level of the model-based interpretation. This method is based on conversion of field measurements into injectivity profiles taking into account the uncertainty in different parts of the data set, which includes the specifics of the DTS deployment, the uncertainty in surface flow rates, and possible data gaps in the history of the well. Several case studies will be discussed where this approach was applied to water injection wells. For the analysis, the re-injection and warmback DTS transient temperature measurements were taken from across the sandface. Furthermore, for comparison, injection profiles were also recorded by conventional PLTs in parallel. This case study will focus mostly on the advanced interpretation opportunities and the challenges related to crossflow through the wellbore during the warm-back phase, related to reservoir pressure dynamics, and finally related to the impact of the method of DTS deployment. In addition to describing the interpretation methodology, this paper will also show the final comparison of the fiber-optic evaluation with the interpretation obtained from the reference PLTs.


2021 ◽  
Author(s):  
Khafiz Muradov ◽  
Akindolu Dada ◽  
Sultan Djabbarov

Abstract Pressure Transient Analysis (PTA) methodology has long enabled well testing to become a standard routine. Modern, well and reservoir monitoring and management practices are now unthinkable without the well test-derived estimates of KH products, skin factors, radii of reservoir boundaries, etc. Temperature data, measured together with the pressure, is widely available. Multiple methods for Temperature Transient Analysis (TTA) have also been developed, but have not yet gained due recognition. Few examples of a systematic application of PTA and TTA (or, in general, Pressure and Temperature Transient Analysis PTTA) on a field scale have been published. Given that the TTA radius of investigation is much smaller than that for PTA, the TTA tends to explore the near-wellbore properties including the near-wellbore permeability profile, depth of damage, multi-layer parameters, fluid properties, etc. This complements the far-field estimates made by PTA, resulting in the PTTA providing a more holistic and complete picture of the state of the reservoir and fluids around the wellbore. This work demonstrates a case study of a systematic application of PTTA methods to wells in a green, oil field. The wells are equipped with a state-of-the-art, downhole, permanent monitoring equipment. A user-friendly, bespoke toolbox has been developed to carry out PTTA analysis in this field. Dozens of transient events that occurred in the first few years of the field production life have been analyzed using PTTA. There are multiple examples of this PTTA analysis demonstrating improved characterization of the reservoir, near-wellbore, fluid, and multi-layer properties. This work will be insightful to those looking to find out what additional, useful information (like reservoir and fluid properties) can be extracted from the traditional well-test, transient pressure and temperature measurements at no extra cost.


2021 ◽  
Vol 155 ◽  
pp. 108160
Author(s):  
Ankit R. Singh ◽  
Andallib Tariq ◽  
Pradeep K. Sahoo ◽  
Prasanna Majumdar ◽  
Deb Mukhopadhyay

2020 ◽  
Vol 20 (2020) ◽  
pp. 53-54
Author(s):  
Danmer Maza Quinones ◽  
Jose Adriano Bento de Souza Cardoso ◽  
Marcio da Silveira Carvalho

Sign in / Sign up

Export Citation Format

Share Document