The North American Central Plains conductivity anomaly and its correlation with gravity, magnetic, seismic, and heat flow data in Saskatchewan, Canada

1990 ◽  
Vol 60 (1-4) ◽  
pp. 169-194 ◽  
Author(s):  
Alan G. Jones ◽  
James A. Craven
2005 ◽  
Vol 42 (4) ◽  
pp. 457-478 ◽  
Author(s):  
Alan G Jones ◽  
Juanjo Ledo ◽  
Ian J Ferguson

Magnetotelluric studies of the Trans-Hudson orogen over the last two decades, prompted by the discovery of a significant conductivity anomaly beneath the North American Central Plains (NACP), from over 300 sites yield an extensive database for interrogation and enable three-dimensional information to be obtained about the geometry of the orogen from southern North Dakota to northern Saskatchewan. The NACP anomaly is remarkable in its continuity along strike, testimony to along-strike similarity of orogenic processes. Where bedrock is exposed, the anomaly can be associated with sulphides that were metamorphosed during subduction and compression and penetratively emplaced deep within the crust of the internides of the orogen to the boundary of the Hearne margin. A new result from this compilation is the discovery of an anomaly within the upper mantle beginning at depths of ~80–100 km. This lithospheric mantle conductor has electrical properties similar to those for the central Slave craton mantle conductor, which lies directly beneath the major diamond-producing Lac de Gras kimberlite field. While the Saskatchewan mantle conductor does not directly underlie the Fort à la Corne kimberlite, which is associated with the Sask craton, the spatial correspondence is close.


1975 ◽  
Vol 43 (3) ◽  
pp. 815-833 ◽  
Author(s):  
A. O. Alabi ◽  
P. A. Camfield ◽  
D. I. Gough

1993 ◽  
Vol 45 (9) ◽  
pp. 985-999 ◽  
Author(s):  
Catherine Degroot-Hedlin ◽  
Steven Constable

1984 ◽  
Vol 21 (5) ◽  
pp. 533-543 ◽  
Author(s):  
S. Handa ◽  
P. A. Camfield

Seven recording magnetometers monitored time-varying fields at points on a northwest–southeast line 280 km long in north-central Saskatchewan during July 1981. The experiment was designed to test the hypothesis advanced in 1975 by Alabi, Camfield, and Gough that the electrical conductivity anomaly in the North American Central Plains links with the Wollaston Domain in the exposed Precambrian Shield of Saskatchewan. From clear reversals in the phase of vertical variations, it is evident that the conductor passes between two stations straddling the Rottenstone–La Ronge Magmatic Belt, to the immediate east of the Wollaston Domain. Enhanced horizontal variations transverse to the belt at a third, intermediate, station reinforce this interpretation. Vertical-field response arrows obtained from daytime events in the period range 1–40 min clearly indicate the existence of a major conductor that extends to lower crustal depths beneath the belt. To the northwest across the Cree Lake Zone, reversals in the direction of response arrows at short periods (up to 4 min) imply complex electrical structures in the shallow part of the crust.Lewry termed the Rottenstone–La Ronge Belt a Hudsonian "Cordillera-type" arc massif, and described strong geological evidence for collisional suturing and microplate interaction in this part of the Churchill Province. A similar scenario seems to apply in Wyoming, from the work of Hills and Houston. Thus the conductor appears to trace a Proterozoic plate margin 1500 km from a subduction zone in Wyoming along a transform fault to a subduction zone in northern Saskatchewan.


Sign in / Sign up

Export Citation Format

Share Document