Functional calculus for sesquilinear forms and the purification map

1975 ◽  
Vol 8 (2) ◽  
pp. 159-170 ◽  
Author(s):  
W. Pusz ◽  
S.L. Woronowicz
2002 ◽  
Vol 102 (2) ◽  
pp. 215-225
Author(s):  
Teresa Bermύdez ◽  
Manuel González ◽  
Antonio Martinόn

Author(s):  
Michael T Jury ◽  
Robert T W Martin

Abstract We extend the Lebesgue decomposition of positive measures with respect to Lebesgue measure on the complex unit circle to the non-commutative (NC) multi-variable setting of (positive) NC measures. These are positive linear functionals on a certain self-adjoint subspace of the Cuntz–Toeplitz $C^{\ast }-$algebra, the $C^{\ast }-$algebra of the left creation operators on the full Fock space. This theory is fundamentally connected to the representation theory of the Cuntz and Cuntz–Toeplitz $C^{\ast }-$algebras; any *−representation of the Cuntz–Toeplitz $C^{\ast }-$algebra is obtained (up to unitary equivalence), by applying a Gelfand–Naimark–Segal construction to a positive NC measure. Our approach combines the theory of Lebesgue decomposition of sesquilinear forms in Hilbert space, Lebesgue decomposition of row isometries, free semigroup algebra theory, NC reproducing kernel Hilbert space theory, and NC Hardy space theory.


Author(s):  
Ian Doust ◽  
Qiu Bozhou

AbstractWell-bounded operators are those which possess a bounded functional calculus for the absolutely continuous functions on some compact interval. Depending on the weak compactness of this functional calculus, one obtains one of two types of spectral theorem for these operators. A method is given which enables one to obtain both spectral theorems by simply changing the topology used. Even for the case of well-bounded operators of type (B), the proof given is more elementary than that previously in the literature.


1986 ◽  
Vol 9 (2) ◽  
pp. 218-236 ◽  
Author(s):  
Paul McGuire

2010 ◽  
Vol 362 (1) ◽  
pp. 100-106
Author(s):  
Ian Doust ◽  
Venta Terauds
Keyword(s):  

2001 ◽  
Vol 183 (2) ◽  
pp. 413-450 ◽  
Author(s):  
José Garcı́a-Cuerva ◽  
Giancarlo Mauceri ◽  
Stefano Meda ◽  
Peter Sjögren ◽  
José Luis Torrea
Keyword(s):  

1957 ◽  
Vol 22 (1) ◽  
pp. 1-14 ◽  
Author(s):  
Leon Henkin

The concepts of ω-consistency and ω-completeness are closely related. The former concept has been generalized to notions of Γ-consistency and strong Γ-consistency, which are applicable not only to formal systems of number theory, but to all functional calculi containing individual constants; and in this general setting the semantical significance of these concepts has been studied. In the present work we carry out an analogous generalization for the concept of ω-completeness.Suppose, then, that F is an applied functional calculus, and that Γ is a non-empty set of individual constants of F. We say that F is Γ-complete if, whenever B(x) is a formula (containing the single free individual variable x) such that ⊦ B(α) for every α in Γ, then also ⊦ (x)B(x). In the paper “Γ-con” a sequence of increasingly strong concepts, Γ-consistency, n = 1,2, 3,…, was introduced; and it is possible in a formal way to define corresponding concepts of Γn-completeness, as follows. We say that F is Γn-complete if, whenever B(x1,…, xn) is a formula (containing exactly n distinct free variables, namely x1…, xn) such that ⊦ B(α1,…,αn) for all α1,…,αn in Γ, then also ⊦ (X1)…(xn)B(x1,…,xn). However, unlike the situation encountered in the paper “Γ-con”, these definitions are not of interest – for the simple reason that F is Γn-complete if and only if it is Γ-complete, as one easily sees.


2002 ◽  
Vol 102A (2) ◽  
pp. 215-225
Author(s):  
Teresa Bermúdez ◽  
Manuel González ◽  
Antonio Martinón

Sign in / Sign up

Export Citation Format

Share Document