Calculation of the saddle-point configuration for an atomistic crack-tip model

1986 ◽  
Vol 20 (6) ◽  
pp. 905-908 ◽  
Author(s):  
J. Kevin McCoy ◽  
Alan J. Markworth
2008 ◽  
Vol 17 (01) ◽  
pp. 265-271 ◽  
Author(s):  
L. SHVEDOV ◽  
S. G. ROHOZIŃSKI ◽  
M. KOWAL ◽  
S. BELCHIKOV ◽  
A. SOBICZEWSKI

Saddle-point configuration of heaviest nuclei is studied in a multidimensional deformation space. Main attention is given to the role of the deformation of multipolarity six of a general type, described by four independent parameters. The dependence of the potential energy of a superheavy nucleus on these parameters at the saddle-point configuration is illustrated. The analysis is performed within a macroscopic-microscopic approach.


1985 ◽  
Vol 32 (12) ◽  
pp. 3325-3327
Author(s):  
Y. Brihaye ◽  
A. Taormina

2010 ◽  
Vol 19 (05n06) ◽  
pp. 1055-1063 ◽  
Author(s):  
A. SOBICZEWSKI ◽  
P. JACHIMOWICZ ◽  
M. KOWAL

Properties of heaviest nuclei at their saddle point are studied in a multidimensional deformation space. The main attention is given to deformation and the shell correction to energy of the nuclei at this point. The analysis is performed within a macroscopic-microscopic approach. A 10-dimensional deformation space is used. A large number of about 300 even-even heavy and superheavy nuclei with proton number 98 ≤ Z ≤ 126 and neutron number 134 ≤ N ≤ 192 are considered. Detailed results are illustrated for nuclei of the element 120. A large shell correction (up to about 7 MeV) is found for these nuclei. For most of them, the correction is larger than the height of the barrier, itself, as the macroscopic contribution to this height is negative.


Sign in / Sign up

Export Citation Format

Share Document