Sedimentology and the stratigraphic sequence of a tropical tidal flat, north-western Australia

1981 ◽  
Vol 29 (2-3) ◽  
pp. 195-221 ◽  
Author(s):  
V. Semeniuk
Author(s):  
Katrina West ◽  
Michael J. Travers ◽  
Michael Stat ◽  
Euan S. Harvey ◽  
Zoe T. Richards ◽  
...  

Phycologia ◽  
2006 ◽  
Vol 45 (2) ◽  
pp. 161-167 ◽  
Author(s):  
Shauna Murray ◽  
Mona Hoppenrath ◽  
Jacob Larsen ◽  
David J. Patterson

2006 ◽  
Vol 33 (5) ◽  
pp. 417 ◽  
Author(s):  
Laurie E. Twigg ◽  
Tim Lowe ◽  
Michael Everett ◽  
Gary Martin

The recovery rate of a population of feral pigs (Sus scrofa) in the west Kimberley in north-western Australia was determined 12 months after a 1080 (sodium fluoroacetate)-baiting program. An estimated 56 pigs were present in the 15 000-ha study area in August 2005 compared with the prebaiting levels of 250–275 pigs in 2004 (11 pigs were known to be alive on site after the 2004 baiting). This represents a population recovery of 20–23% of the 2004 prebaiting levels. Although most pigs were in good body condition, environmental conditions were quite different between the two years. In 2005, some waterholes were dry or comprised mainly muddy water with little associated shelter for feral pigs. Consequently, and in contrast to 2004, no pigs were seen, and no bait take could be attributed to feral pigs, at the four resurveyed waterholes. Most pig sightings, and activity, were close to the Fitzroy River. Fermented wheat, with blood and bone, was used to determine areas of pig activity, and also used as prefeed before 1080-baiting commenced in 2005. Using the same bait stations as for 2004, plus additional stations established in new areas of pig activity, 1080-treated wheat and malted barley again proved highly effective in reducing pig numbers. The daily sighting index before and after 1080-baiting indicated that pig numbers had been reduced by ~90% within four days. Estimated pre- and postpoisoning density, with and without an edge effect, was 0.12–1.7 pigs km–2 and 0.05–0.67 pigs km–2. Pig tracks decreased to zero on the six track plots within two days of baiting, but the number of macropod tracks remained constant over the four-day baiting period. Thirty-eight poisoned pigs were found after 1080-baiting, and these were generally in clustered groups within 200 m of an active bait station. Poisoned juvenile pigs were again found closer to the active bait stations than were adult or subadult pigs (P < 0.05).


2019 ◽  
Vol 67 (6) ◽  
pp. 361
Author(s):  
N. L. McKenzie ◽  
R. D. Bullen ◽  
L. A. Gibson

North-western Australia comprises the Kimberley Craton and parts of three adjacent sedimentary basins. It has a tropical climate and habitats that range from semiarid plains supporting grasslands to mesic uplands supporting woodlands as well as narrow riparian forests and patches of rainforest; mangrove forests occur along the coast. Its bat fauna comprises three obligate phytophages and 27 obligate zoophages. Analysis of zoophagic bats at 171 sites scattered throughout this study area revealed two compositionally distinct ensembles. One, comprising 19 species, occupies mangrove forest and includes three species known only to occupy mangroves in Western Australia. The other, comprising 20 species, occupies landward habitats and includes four species that are found only in landward ecosystems. Both ensembles are structured in terms of resource allocation, but nestedness observed in assemblage composition can be explained by environmental factors, implying the influence of environmental controls. Sixteen species belong to both ensembles, but seven of these require cave roosts and occur only near cavernous country while three others are confined to rocky riparian habitats. The richest assemblages were recorded in rugged cavernous landscapes in complex vegetation structures near permanent freshwater pools in the most mesic areas.


2020 ◽  
pp. 251-274
Author(s):  
Jordan A. McDivitt ◽  
Steffen G. Hagemann ◽  
Matthew S. Baggott ◽  
Stuart Perazzo

Abstract The Kalgoorlie gold camp in the Yilgarn craton of Western Australia comprises the supergiant Golden Mile and the smaller Mt. Charlotte, Mt. Percy, and Hidden Secret deposits. Since the camp’s discovery in 1893, ~1,950 metric tons (t) of Au have been produced from a total estimated endowment of ~2,300 t. The camp is located within Neoarchean rocks of the Kalgoorlie terrane, within the Eastern Goldfields superterrane of the eastern Yilgarn craton. Gold mineralization is distributed along an 8- × 2-km, NNW-trending corridor, which corresponds to the Boulder Lefroy-Golden Mile fault system. The host stratigraphic sequence, dated at ca. 2710 to 2660 Ma, comprises lower ultramafic and mafic lava flow rocks, and upper felsic to intermediate volcaniclastic, epiclastic, and lava flow rocks intruded by highly differentiated dolerite sills such as the ca. 2685 Ma Golden Mile Dolerite. Multiple sets of NNW-trending, steeply dipping porphyry dikes intruded this sequence from ca. 2675 to 2640 Ma. From ca. 2685 to 2640 Ma, rocks of the Kalgoorlie gold camp were subjected to multiple deformation increments and metamorphism. Early D1 deformation from ca. 2685 to 2675 Ma generated the Golden Mile fault and F1 folds. Prolonged sinistral transpression from ca. 2675 to 2655 Ma produced overprinting, NNW-trending sets of D2-D3 folds and faults. The last deformation stage (D4; &lt; ca. 2650 Ma) is recorded by N- to NNE-trending, dextral faults which offset earlier structures. The main mineralization type in the Golden Mile comprises Fimiston lodes: steeply dipping, WNW- to NNW-striking, gold- and telluride-bearing carbonate-quartz veins with banded, colloform, and crustiform textures surrounded by sericite-carbonate-quartz-pyrite-telluride alteration zones. These lodes were emplaced during the earlier stages of regional sinistral transpression (D2) as Riedel shear-type structures. During a later stage of regional sinistral transpression (D3), exceptionally high grade Oroya-type mineralization developed as shallowly plunging ore shoots with “Green Leader” quartz-sericite-carbonate-pyrite-telluride alteration typified by vanadium-bearing muscovite. In the Hidden Secret orebody, ~3 km north-northwest of the Golden Mile, lode mineralization is a silver-rich variety characterized by increased abundance of hessite and petzite and decreased abundance of calaverite. At the adjacent Mt. Charlotte deposit, the gold-, silver-, and telluride-bearing lodes become subordinate to the Mt. Charlotte-type stockwork veins. The stockwork veins occur as planar, 2- to 50-cm thick, auriferous quartz-carbonate-sulfide veins that define steeply NW- to SE-dipping and shallowly N-dipping sets broadly coeval with D4 deformation. Despite extensive research, there is no consensus on critical features of ore formation in the camp. Models suggest either (1) distinct periods of mineralization over a protracted, ca. 2.68 to 2.64 Ga orogenic history; or (2) broadly synchronous formation of the different types of mineralization at ca. 2.64 Ga. The nature of fluids, metal sources, and mineralizing processes remain debated, with both metamorphic and magmatic models proposed. There is strong evidence for multiple gold mineralization events over the course of the ca. 2.68 to 2.64 orogenic window, differing in genesis and contributions from either magmatic or metamorphic ore-forming processes. However, reconciling these models with field relationships and available geochemical and geochronological constraints remains difficult and is the subject of ongoing research.


Sign in / Sign up

Export Citation Format

Share Document