geochronological constraints
Recently Published Documents


TOTAL DOCUMENTS

352
(FIVE YEARS 72)

H-INDEX

50
(FIVE YEARS 5)

Minerals ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 80
Author(s):  
Jinhua Qin ◽  
Denghong Wang ◽  
Yuchuan Chen

Chuankou tungsten (W) ore field, with an estimated WO3 reserve exceeding 300,000 tonnes, is so far the largest Indosinian (Triassic) granite-related W ore field in South China. However, the precise emplacement ages, sources of granitoids, and their relationship with W mineralization are still not well understood. In this research, four main magmatic stages (G-1 to G-4) have been identified in the Chuankou ore field, including G-1 (phase I, biotite monzogranite), G-2 (phase II, two-mica monzogranite), G-3 (phase III, fine-grained granite), and G-4 (phase IV, granite porphyry). LA-ICP-MS U-Pb dating of zircon grains from granitoids of the Chuankou W ore field yields emplacement ages of 230.8 ± 1.6 Ma, 222.1 ± 0.56 Ma, 203.1 ± 1.6 Ma, and 135.5 ± 2.4 Ma, respectively. Granitoids from the Chuankou ore field contain a large amount of peraluminous minerals such as biotite, musvite, garnet and tourmaline. Geochemically, the granitoids have high Si and Al (A/CNK > 1.1) content but low alkali, Fe, Mg, Mn, and Ca content. Moreover, there is enrichment of Rb, Zr, Hf, Th, and U, but depletions of Ba, Sr, P, and Ti. The granitoids have especially low Zr + Nb + Ce + Y and high Rb/Ba ratios, further indicating a highly fractionated S-type granite affinity with a significant crystal fractionation process in regard to K-feldspar, plagioclase, biotite, Ti-bearing minerals (except rutile), zircon, apatite, allanite, and monazite. Whole-rock εNd(t) and TDM2 values are −10.77 and 2090 Ma for G-1, −9.09 to −7.47 and 1764–1684 Ma for G-2, −10.07 to −6.53 and 1669–1471 Ma for G-3, respectively, indicating that the Chuankou granitoids were derived from two episodes of partial melting of the Paleoproterozoic to Mesoproterozoic metamorphic basement. Trace elements within the zircons and whole-rock geochemistry yielded evidence of the close relationship between W mineralization and G-1 and G-2 granitoids of the Chuankou ore field. The batholith of the Chuankou ore field was formed 20–10 Ma later than the peak age of the collisions orogeny and formed in a post-collisional setting.


2022 ◽  
Author(s):  
Jérémie Soldner ◽  
Yingde Jiang ◽  
et al.

Table S1: U-Pb LA-ICP-MS data for zircons from granulite and amphibolite. Table S2: U-Pb LA-ICP-MS data for zircons from metapelite and metapsammite. Table S3: Zircon trace-element compositions from granulite and amphibolite. Table S4: Hf isotopic compositions for zircons from granulite and amphibolite.


2022 ◽  
Author(s):  
Jérémie Soldner ◽  
Yingde Jiang ◽  
et al.

Table S1: U-Pb LA-ICP-MS data for zircons from granulite and amphibolite. Table S2: U-Pb LA-ICP-MS data for zircons from metapelite and metapsammite. Table S3: Zircon trace-element compositions from granulite and amphibolite. Table S4: Hf isotopic compositions for zircons from granulite and amphibolite.


2021 ◽  
pp. 1-16
Author(s):  
Ming Zheng ◽  
Yang Song ◽  
Haifeng Li ◽  
Carl Guilmette ◽  
Juxing Tang ◽  
...  

Abstract The Bangong–Nujiang suture zone (BNSZ), which separates the Gondwana-derived Qiangtang and Lhasa terranes, preserves limited geological records of the Bangong–Nujiang Ocean (BNO). The timing of opening of this ocean has been hotly debated due to the rare and complicated rock records in the suture zones, which span over 100 Ma from Carboniferous–Permian to Early Jurassic time, based on geological, palaeontological and palaeomagnetic data. A combination of geochemical, geochronological and isotopic data are reported for the Riasairi trachytes, central BNSZ, northern Tibet, to constrain its petrogenesis and tectonic settings. Zircon U–Pb dating by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) yields mean ages of 236 Ma. Geochemically, these rocks are high-K calc-alkaline with moderate SiO2 (59.1–67.5 wt%) and high K2O + Na2O (8.1–11.6 wt%) contents. They are enriched in light rare earth elements with negative Eu anomalies, and show enrichments in high-field-strength elements with positive ‘Nb, Ta’ anomalies, similar to the intra-continental rift setting-related felsic lavas from the African Rift System. The high positive zircon ϵHf(t) and bulk ϵNd(t) values, as well as high initial Pb isotopes, imply a heterogeneous source involving both asthenospheric and subcontinental lithospheric mantle. The field and geochemical data jointly suggest that the Riasairi trachytes within the Mugagangri Group were formed in a continental rift setting. We interpret that the continental-rift-related Riaisairi trachytic lavas as derived from the southern margin of the Qiangtang terrane, implying that the BNO would have opened by Middle Triassic time, well after the commonly interpreted break-up of the Qiangtang terrane from Gondwana.


2021 ◽  
Vol 366 ◽  
pp. 106422
Author(s):  
Truong X. Le ◽  
Paul H.G.M. Dirks ◽  
Ioan V. Sanislav ◽  
Jan M. Huizenga ◽  
Helen A. Cocker ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document