scholarly journals Large‐scale eDNA metabarcoding survey reveals marine biogeographic break and transitions over tropical north‐western Australia

Author(s):  
Katrina West ◽  
Michael J. Travers ◽  
Michael Stat ◽  
Euan S. Harvey ◽  
Zoe T. Richards ◽  
...  

2017 ◽  
Vol 68 (1) ◽  
pp. 65 ◽  
Author(s):  
A. Lafratta ◽  
J. Fromont ◽  
P. Speare ◽  
C. H. L. Schönberg

We report severe bleaching in a turbid water coral community in north-western Australia. Towed still imagery was used for a benthic survey near Onslow in March 2013 to assess thermal stress in hard and soft corals, finding 51–68% of all corals fully bleached in 10–15-m water depth. Tabulate or foliaceous Turbinaria was the locally most abundant hard coral (46%), followed by massives such as faviids and poritids (25%) and encrusting coral (12%), thus over 80% of the local corals could be considered to be bleaching resistant. All coral groups were bleached in similar proportions (massive hard corals 51%<soft corals 60%<encrusting hard corals 62%<Turbinaria 62%<‘others’ 68%). NOAA data and environmental assessments suggest previous recurrent thermal stress throughout the last 10 years in the study area. On the basis of these records this stress apparently changed the community structure from bleaching vulnerable species such as Acropora, leaving more tolerant species, and reduced coral cover. We could see no evidence for adaptation or acclimation of corals in this area. Towed still imagery was found to be a suitable means for rapid and large-scale bleaching studies in shallow, turbid areas where diving can be difficult or impossible.



Author(s):  
Ylva S. Olsen ◽  
Lydiane Mattio ◽  
Andrea Zavala Perez ◽  
Russ C. Babcock ◽  
Damian Thompson ◽  
...  


Phycologia ◽  
2006 ◽  
Vol 45 (2) ◽  
pp. 161-167 ◽  
Author(s):  
Shauna Murray ◽  
Mona Hoppenrath ◽  
Jacob Larsen ◽  
David J. Patterson




2020 ◽  
Vol 15 (2) ◽  
pp. 156-167
Author(s):  
John K. Keesing ◽  
Peter Barnes ◽  
Brooke Ingram ◽  
Lisa-Ann Gershwin ◽  
Dongyan Liu ◽  
...  


2015 ◽  
Vol 4 ◽  
pp. 71-94
Author(s):  
Greg Castillo

Aboriginal Australian contemporary artists create works that express indigenous traditions as well as the unprecedented conditions of global modernity. This is especially true for the founders of the Spinifex Arts Project, a collective established in 1997 to create so-called “government paintings”: the large-scale canvases produced as documents of land tenure used in negotiations with the government of Western Australia to reclaim expropriated desert homelands. British and Australian nuclear testing in the 1950s displaced the Anangu juta pila nguru, now known to us as the Spinifex people, from their nomadic lifeworld. Exodus and the subsequent struggle to regain lost homelands through paintings created as corroborating evidence for native title claims make Spinifex canvases not simply expressions of Tjukurpa, or “Dreamings,” but also artifacts of the atomic age and its impact on a culture seemingly far from the front lines of cold war conflict.



2006 ◽  
Vol 33 (5) ◽  
pp. 417 ◽  
Author(s):  
Laurie E. Twigg ◽  
Tim Lowe ◽  
Michael Everett ◽  
Gary Martin

The recovery rate of a population of feral pigs (Sus scrofa) in the west Kimberley in north-western Australia was determined 12 months after a 1080 (sodium fluoroacetate)-baiting program. An estimated 56 pigs were present in the 15 000-ha study area in August 2005 compared with the prebaiting levels of 250–275 pigs in 2004 (11 pigs were known to be alive on site after the 2004 baiting). This represents a population recovery of 20–23% of the 2004 prebaiting levels. Although most pigs were in good body condition, environmental conditions were quite different between the two years. In 2005, some waterholes were dry or comprised mainly muddy water with little associated shelter for feral pigs. Consequently, and in contrast to 2004, no pigs were seen, and no bait take could be attributed to feral pigs, at the four resurveyed waterholes. Most pig sightings, and activity, were close to the Fitzroy River. Fermented wheat, with blood and bone, was used to determine areas of pig activity, and also used as prefeed before 1080-baiting commenced in 2005. Using the same bait stations as for 2004, plus additional stations established in new areas of pig activity, 1080-treated wheat and malted barley again proved highly effective in reducing pig numbers. The daily sighting index before and after 1080-baiting indicated that pig numbers had been reduced by ~90% within four days. Estimated pre- and postpoisoning density, with and without an edge effect, was 0.12–1.7 pigs km–2 and 0.05–0.67 pigs km–2. Pig tracks decreased to zero on the six track plots within two days of baiting, but the number of macropod tracks remained constant over the four-day baiting period. Thirty-eight poisoned pigs were found after 1080-baiting, and these were generally in clustered groups within 200 m of an active bait station. Poisoned juvenile pigs were again found closer to the active bait stations than were adult or subadult pigs (P < 0.05).



2006 ◽  
Vol 19 (10) ◽  
pp. 1948-1969 ◽  
Author(s):  
Matthew H. England ◽  
Caroline C. Ummenhofer ◽  
Agus Santoso

Abstract Interannual rainfall extremes over southwest Western Australia (SWWA) are examined using observations, reanalysis data, and a long-term natural integration of the global coupled climate system. The authors reveal a characteristic dipole pattern of Indian Ocean sea surface temperature (SST) anomalies during extreme rainfall years, remarkably consistent between the reanalysis fields and the coupled climate model but different from most previous definitions of SST dipoles in the region. In particular, the dipole exhibits peak amplitudes in the eastern Indian Ocean adjacent to the west coast of Australia. During dry years, anomalously cool waters appear in the tropical/subtropical eastern Indian Ocean, adjacent to a region of unusually warm water in the subtropics off SWWA. This dipole of anomalous SST seesaws in sign between dry and wet years and appears to occur in phase with a large-scale reorganization of winds over the tropical/subtropical Indian Ocean. The wind field alters SST via anomalous Ekman transport in the tropical Indian Ocean and via anomalous air–sea heat fluxes in the subtropics. The winds also change the large-scale advection of moisture onto the SWWA coast. At the basin scale, the anomalous wind field can be interpreted as an acceleration (deceleration) of the Indian Ocean climatological mean anticyclone during dry (wet) years. In addition, dry (wet) years see a strengthening (weakening) and coinciding southward (northward) shift of the subpolar westerlies, which results in a similar southward (northward) shift of the rain-bearing fronts associated with the subpolar front. A link is also noted between extreme rainfall years and the Indian Ocean Dipole (IOD). Namely, in some years the IOD acts to reinforce the eastern tropical pole of SST described above, and to strengthen wind anomalies along the northern flank of the Indian Ocean anticyclone. In this manner, both tropical and extratropical processes in the Indian Ocean generate SST and wind anomalies off SWWA, which lead to moisture transport and rainfall extremes in the region. An analysis of the seasonal evolution of the climate extremes reveals a progressive amplification of anomalies in SST and atmospheric circulation toward a wintertime maximum, coinciding with the season of highest SWWA rainfall. The anomalies in SST can appear as early as the summertime months, however, which may have important implications for predictability of SWWA rainfall extremes.



2019 ◽  
Vol 67 (6) ◽  
pp. 361
Author(s):  
N. L. McKenzie ◽  
R. D. Bullen ◽  
L. A. Gibson

North-western Australia comprises the Kimberley Craton and parts of three adjacent sedimentary basins. It has a tropical climate and habitats that range from semiarid plains supporting grasslands to mesic uplands supporting woodlands as well as narrow riparian forests and patches of rainforest; mangrove forests occur along the coast. Its bat fauna comprises three obligate phytophages and 27 obligate zoophages. Analysis of zoophagic bats at 171 sites scattered throughout this study area revealed two compositionally distinct ensembles. One, comprising 19 species, occupies mangrove forest and includes three species known only to occupy mangroves in Western Australia. The other, comprising 20 species, occupies landward habitats and includes four species that are found only in landward ecosystems. Both ensembles are structured in terms of resource allocation, but nestedness observed in assemblage composition can be explained by environmental factors, implying the influence of environmental controls. Sixteen species belong to both ensembles, but seven of these require cave roosts and occur only near cavernous country while three others are confined to rocky riparian habitats. The richest assemblages were recorded in rugged cavernous landscapes in complex vegetation structures near permanent freshwater pools in the most mesic areas.



Sign in / Sign up

Export Citation Format

Share Document