tidal flats
Recently Published Documents


TOTAL DOCUMENTS

787
(FIVE YEARS 172)

H-INDEX

44
(FIVE YEARS 5)

2022 ◽  
Vol 14 (2) ◽  
pp. 287
Author(s):  
Yanyan Kang ◽  
Jinyan He ◽  
Bin Wang ◽  
Jun Lei ◽  
Zihe Wang ◽  
...  

The radial sand ridges consist of more than 70 sand ridges that are spread out radially on the continental shelf of the South Yellow Sea. As a unique geomorphological feature in the world, its evolution process and characteristics are crucial to marine resource management and ecological protection. Based on the multi-source remote sensing image data from 1979 to 2019, three types of geomorphic feature lines, artificial coastlines, waterlines, and sand ridge lines were extracted. Using the GIS sequence analysis method (Digital Shoreline Analysis System (DSAS), spatial overlay analysis, standard deviational ellipse method), the evolution characteristics of the shoreline, exposed tidal flats, and underwater sand ridges from land to sea were interpreted. The results demonstrate that: (1) The coastline has been advancing towards the sea with a maximum advance rate of 348.76 m/a from Wanggang estuary to Xiaoyangkou Port. (2) The exposed tidal flats have decreased by 1484 km2 including the reclaimed area of 1414 km2 and showed a trend of erosion in the north around Xiyang channel and deposition in the southeast around the Gaoni and Jiangjiasha areas. (3) The overall sand ridge lines showed a trend of gradually moving southeast (135°), and the moving distance is nearly 4 km in the past 40 years. In particular, the sand ridge of Tiaozini has moved 11 km southward, while distances of 8 km for Liangyuesha and 5 km for Lengjiasha were also observed. For the first time, this study quantified the overall migration trend of the RSRs. The imbalance of the regional tidal wave system may be one of the main factors leading to the overall southeastward shift of the radiation sandbanks.


2022 ◽  
Vol 7 (12) ◽  
pp. 121611-121631
Author(s):  
Wilson da Rocha Nascimento Júnior ◽  
Olavo Bilac Quaresma De Oliveira Filho ◽  
Rafael Melo Dos Reis ◽  
Pedro Walfir Martins e Souza Filho ◽  
Diogo Correa Santos ◽  
...  

2022 ◽  
Vol 264 ◽  
pp. 107697
Author(s):  
Bingxue Zhao ◽  
Yongxue Liu ◽  
Lei Wang ◽  
Yongchao Liu ◽  
Chao Sun ◽  
...  

2021 ◽  
Vol 9 ◽  
Author(s):  
Shawna N. Little ◽  
Peter J. van Hengstum ◽  
Patricia A. Beddows ◽  
Jeffrey P. Donnelly ◽  
Tyler S. Winkler ◽  
...  

Dissolution of carbonate platforms, like The Bahamas, throughout Quaternary sea-level oscillations have created mature karst landscapes that can include sinkholes and off-shore blue holes. These karst features are flooded by saline oceanic waters and meteoric-influenced groundwaters, which creates unique groundwater environments and ecosystems. Little is known about the modern benthic meiofauna, like foraminifera, in these environments or how internal hydrographic characteristics of salinity, dissolved oxygen, or pH may influence benthic habitat viability. Here we compare the total benthic foraminiferal distributions in sediment-water interface samples collected from <2 m water depth on the carbonate tidal flats, and the two subtidal blue holes Freshwater River Blue Hole and Meredith’s Blue Hole, on the leeward margin of Great Abaco Island, The Bahamas. All samples are dominated by miliolid foraminifera (i.e., Quinqueloculina and Triloculina), yet notable differences emerge in the secondary taxa between these two environments that allows identification of two assemblages: a Carbonate Tidal Flats Assemblage (CTFA) vs. a Blue Hole Assemblage (BHA). The CTFA includes abundant common shallow-water lagoon foraminifera (e.g., Peneroplis, Rosalina, Rotorbis), while the BHA has higher proportions of foraminifera that are known to tolerate stressful environmental conditions of brackish and dysoxic waters elsewhere (e.g., Pseudoeponides, Cribroelphidium, Ammonia). We also observe how the hydrographic differences between subtidal blue holes can promote different benthic habitats for foraminifera, and this is observed through differences in both agglutinated and hyaline fauna. The unique hydrographic conditions in subtidal blue holes make them great laboratories for assessing the response of benthic foraminiferal communities to extreme environmental conditions (e.g., low pH, dysoxia).


2021 ◽  
Vol 1 (2) ◽  
Author(s):  
Thi Lan PHAM ◽  
Si Son TONG ◽  
Thi Thu Ha LE ◽  
Thi Le LE ◽  
Huu Duc HOANG

Tidal flat plays a crucial role in socio-economic development and ecological environment.Tidal flats in Ha Long-Cam Pha in Vietnam are impacted by human activities, especially coal miningactivities. Using remote sensing data is able to detect, extract, and monitor the changes of tidal flats andexploited coal mine area with multi-temporal, in various scales, and for a large coverage. This studyaims to investigate the impact of coal mining activities on the changes of tidal flats using remote sensingin Cam Pha, Ha Long, one of the biggest coal basins in Vietnam. Digital Elevation Models (DEMs) oftidal flats constructed by Landsat satellite images acquired in years 1989, 2001, and 2014 are comparedto determine the volume changes. Besides, coal mining activities including coal production, waste rockdump area, and the expansion of open coal mine during the period 1989-2014 are investigated usingcorrespondent Landsat images and the reports from the coal mine companies in the study area. Sedimentsamples in tidal flats are analyzed to determine the origin of the sediments. As the results, organic matterin the tidal flats is dominant with the concentration of 459 g/kg to 607 g/kg, which is evidence for theimpact of coal exploitation on the coastal environment. In addition, the relationship between coal mineactivities and tidal flat variation is well observed in this study.


2021 ◽  
Vol 8 ◽  
Author(s):  
Chunyang Xu ◽  
Chunyan Zhou ◽  
Kao Ma ◽  
Peng Wang ◽  
Xihe Yue

Jiaozhou Bay (JZB), located at Qingdao City, north China, is a semi-enclosed shallow bay that has undergone large-scale land reclamation and is suffering from a deteriorated water environment. Long-term evolution of JZB with respect of coastline, tidal prism, tidal dynamics, water-exchange capacity, and pollutant transport from 1863 to 2020 was investigated in this paper, using remote sensing images, historical charts, and a numerical model. The JZB was predominated by natural evolution from 1863 to 1935, during which the coastline barely changed. Thereafter, human intervention became intense and more and more natural tidal flats were replaced by salt ponds, aquaculture area, and reclamation very quickly. As a result, tidal prism, area of tidal flats, and area of JZB decreased sharply by 0.290 km3, 182 km2, and 223 km2, respectively, from 1935 to 2020, corresponding to annual decreasing rates being of 123 times, 10 times, 12 times, respectively, as that of before 1935. A numerical model showed that the residual current in JZB tended to be weaker due to the change of coastline and bathymetry, which is not favoring the water-exchange and pollutant transport, especially in the northeast of JZB. The basin residence time increased from 15.5 days in 1935 to 17.6 days in 2020, because of weaker residual tidal current and smaller tidal prism. Local residence time increased significantly near the area with large land reclamation, especially in the northeast and west of JZB. Distribution of dissolved inorganic nitrogen (DIN), in each year, which is the dominant pollutant in JZB, indicated higher DIN concentration and weaker transport along with reclamation. The research on JZB evolution over the last 150 years can provide useful suggestions for the decision-makers of the local government to improve the marine ecosystem. The systematic method to investigate long-term water environment evolution of JZB can be used to study other semi-closed bays.


2021 ◽  
Vol 13 (24) ◽  
pp. 5169
Author(s):  
Keunyong Kim ◽  
Hahnchul Jung ◽  
Jong-Kuk Choi ◽  
Joo-Hyung Ryu

Coastal zones are very dynamic natural systems that experience short-term and long-term morphological changes. Their highly dynamic behavior requires frequent monitoring. Tidal flat topography for a large spatial coverage has been generated mainly by the waterline extraction method from multitemporal remote sensing observations. Despite the efficiency and robustness of the waterline extraction method, the waterline-based digital elevation model (DEM) is limited to representing small scale topographic features, such as localized tidal tributaries. Tidal flats show a rapid increase in SAR backscattering coefficients when the tide height is lower than the tidal flat topography compared to when the tidal flat is covered by water. This leads to a tidal flat with a distinct statistical behavior on the temporal variability of our multitemporal SAR backscattering coefficients. Therefore, this study aims to suggest a new method that can overcome the constraints of the waterline-based method by using a pixel-based DEM generation algorithm. Jenks Natural Break (JNB) optimization was applied to distinguish the tidal flat from land and ocean using multitemporal Senitnel-1 SAR data for the years 2014–2020. We also implemented a logistic model to characterize the temporal evolution of the SAR backscattering coefficients along with the tide heights and estimated intertidal topography. The Sentinel-1 DEM from the JNB classification and logistic function was evaluated by an airborne Lidar DEM. Our pixel-based DEM outperformed the waterline-based Landsat DEM. This study demonstrates that our statistical approach to intertidal classification and topography serves to monitor the near real-time spatiotemporal distribution changes of tidal flats through continuous and stable SAR data collection on local and regional scales.


2021 ◽  
Vol 13 (23) ◽  
pp. 4900
Author(s):  
Jianwei Peng ◽  
Shuguang Liu ◽  
Weizhi Lu ◽  
Maochou Liu ◽  
Shuailong Feng ◽  
...  

Coastal wetland ecosystems, one of the most important ecosystems in the world, play an important role in regulating climate, sequestering blue carbon, and maintaining sustainable development of coastal zones. Wetland landscapes are notoriously difficult to map with satellite data, particularly in highly complex, dynamic coastal regions. The Liao River Estuary (LRE) wetland in Liaoning Province, China, has attracted major attention due to its status as Asia’s largest coastal wetland, with extensive Phragmites australis (reeds), Suaeda heteroptera (seepweed, red beach), and other natural resources that have been continuously encroached upon by anthropogenic land-use activities. Using the Continuous Change Detection and Classification (CCDC) algorithm and all available Landsat images, we mapped the spatial–temporal changes of LRE coastal wetlands (e.g., seepweed, reed, tidal flats, and shallow marine water) annually from 1986 to 2018 and analyzed the changes and driving forces. Results showed that the total area of coastal wetlands in the LRE shrank by 14.8% during the study period. The tidal flats were the most seriously affected type, with 45.7% of its total area lost. One of the main characteristics of wetland change was the concurrent disappearance and emergence of wetlands in different parts of the LRE, creating drastically different mixtures of wetland quality (e.g., wetland age composition) in addition to area change. The reduction and replacement/translocation of coastal wetlands were mainly caused by human activities related to urbanization, tourism, land reclamation, and expansion of aquaculture ponds. Our efforts in mapping annual changes of wetlands provide direct, specific, and spatially explicit information on rates, patterns, and causes of coastal wetland change, both in coverage and quality, so as to contribute to the effective plans and policies for coastal management, preservation, and restoration of coastal ecosystem services.


Geographies ◽  
2021 ◽  
Vol 1 (3) ◽  
pp. 292-314
Author(s):  
Chao Xu ◽  
Weibo Liu

Tidal flats are playing a critical role in the coastal environment, which mainly rely on satellite images to map the distribution on large spatiotemporal scales. Much effort has been made to monitor and analyze the spatiotemporal dynamics of tidal flats in order to provide worthwhile references for scientists and lawmakers. Instead of considering the dynamics of tidal flats only, this study implemented a series of comprehensive analyses on the tidal flats along the coast of Florida during the period 1984–2020. First, the analyses on the pixel level examined the spatiotemporal characteristics of tidal flat dynamics and the interactions with lands and permanent water. Second, the contiguous pixels of tidal flats were assembled as objects, and two geometric attributes were calculated and used to track the temporal patterns of tidal flat dynamics on this level. Finally, the Mann–Kendall test and Sen’s slope estimator were applied to identify and quantify the significant trends of tidal flat dynamics on the two levels. The results highlighted the differences in tidal flat distributions and dynamics between the Gulf Coast and Atlantic Coast, which further verified effective GIS representations and analyses that could be applied to other coastal studies.


Sign in / Sign up

Export Citation Format

Share Document