geologic setting
Recently Published Documents


TOTAL DOCUMENTS

305
(FIVE YEARS 36)

H-INDEX

24
(FIVE YEARS 3)

2021 ◽  
Author(s):  
Amanda Lanik ◽  
Jason Rogers ◽  
Ronald Karpilo

Geologic Resources Inventory reports provide information and resources to help park managers make decisions for visitor safety, planning and protection of infrastructure, and preservation of natural and cultural resources. Information in GRI reports may also be useful for interpretation. This report synthesizes discussions from a scoping meeting held in 2005 and a follow-up conference call in 2018. Chapters of this report discuss the geologic setting and significance, geologic features and processes, and geologic resource management issues within Lake Clark National Park and Preserve. Information about the previously completed GRI map data is also provided. GRI map posters (separate product) illustrate these data. Geologic features, processes, and resource management issues identified include volcanoes and volcanic hazards, bedrock, faults and folds, landslides and rockfall, earthquakes, tsunamis, mineral development and abandoned mineral lands, paleontological resources, glaciers and glacier monitoring, lakes, permafrost, and coastal features.


2021 ◽  
Vol 116 (8) ◽  
pp. 1981-2009
Author(s):  
Joel B.H. Andersson ◽  
Tobias E. Bauer ◽  
Olof Martinsson

Abstract To guide future exploration, this predominantly field based study has investigated the structural evolution of the central Kiruna area, the type locality for iron oxide-apatite deposits that stands for a significant amount of the European iron ore production. Using a combination of geologic mapping focusing on structures and stratigraphy, petrography with focus on microstructures, X-ray computed tomography imaging of sulfide-structure relationships, and structural 2D-forward modeling, a structural framework is provided including spatial-temporal relationships between iron oxide-apatite emplacement, subeconomic Fe and Cu sulfide mineralization, and deformation. These relationships are important to constrain as a guidance for exploration in iron oxide-apatite and iron oxide copper-gold prospective terrains and may help to understand the genesis of these deposit types. Results suggest that the iron oxide-apatite deposits were emplaced in an intracontinental back-arc basin, and they formed precrustal shortening under shallow crustal conditions. Subsequent east-west crustal shortening under greenschist facies metamorphism inverted the basin along steep to moderately steep E-dipping structures, often subparallel with bedding and lithological contacts, with reverse, oblique to dip-slip, east-block-up sense of shears. Fe and Cu sulfides associated with Fe oxides are hosted by structures formed during the basin inversion and are spatially related to the iron oxide-apatite deposits but formed in fundamentally different structural settings and are separated in time. The inverted basin was gently refolded and later affected by hydraulic fracturing, which represent the last recorded deformation-hydrothermal events affecting the crustal architecture of central Kiruna.


2021 ◽  
Author(s):  
Michael Barthelmes

Geologic Resources Inventory reports provide information and resources to help park managers make decisions for visitor safety, planning and protection of infrastructure, and preservation of natural and cultural resources. Information in GRI reports may also be useful for interpretation. This report synthesizes discussions from a scoping meeting held in 2012 and a follow-up conference call in 2020. Chapters of this report discuss the geologic setting and significance, geologic features and processes, and geologic resource management issues within Kennesaw Mountain National Battlefield Park. Information about the previously completed GRI map data is also provided. A GRI map poster (separate product) illustrate the GRI map data. Geologic features, processes, and resource management issues identified include erosion and mass wasting, fluvial features and processes, monadnocks, earthworks, stone quarry, building stone, ultramafic rocks, seismic activity, caves and karst, and eolian features and processes.


2021 ◽  
Author(s):  
◽  

This Open-File Report makes available raw analytical data from laboratory procedures completed to determine the age of a rock sample collected during geologic investigations funded or partially supported by the Utah Geological Survey (UGS). Table 1 provides the sample identification and location for the age data. The references listed in table 1 generally provide additional information such as sample location, geologic setting, and significance or interpretation of the sample in the context of the area where it was collected. This report was prepared by Krueger Enterprises, Inc., Geochron Laboratories Division in 1995 under contract to the UGS. These data are highly technical in nature and proper interpretation requires considerable training in the applicable geochronologic techniques.


Minerals ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1088
Author(s):  
Chul-Ho Heo ◽  
Seong-Yong Kim ◽  
Il-Hwan Oh

Eunjeok Au–Ag deposits are situated in the Yeongam district, Cheollanamdo-province, South Korea. They are genetically related to the Bulgugsa magmatic event (ca. 110–60 Ma), caused by the transition in the subduction direction and style of the Izanagi Plate. Three gold- and silver-bearing hydrothermal veins filled the fractures of the Cretaceous rhyolitic tuff. The major ore minerals were arsenopyrite (31.47–32.20 at.% As), pyrite, chalcopyrite, sphalerite (8.58–10.71 FeS mole%) and galena with minor amounts of electrum (62.77–78.15 at.% Au), native silver, and argentite. Sericitization was dominant in the alteration zone. The various textures of quartz veins (i.e., breccia, crustiform, comb, and vuggy) may indicate the formation of an epithermal environment. The auriferous fluids with the H2O–NaCl system have homogenization temperatures and salinities of 204 °C to 314 °C, less than 10 wt.% equiv. NaCl, and experienced mixing (dilution and cooling) events during mineralization. Considering the characteristics of the geologic setting, major fault system, and host rock, the Eunjeok Au–Ag deposit within the Yeongam district tends to share the general geologic characteristics of Haenam–Jindo epithermal mineralization episodes. However, the age of gold–silver mineralization (86.0 Ma) is older than that of Haenam–Jindo epithermal mineralization episodes (<70.3 Ma), implying some differences exist in the genetic sequence of extensional characteristics caused by transcurrent Gwangju–Yeongdong faults.


2021 ◽  
Vol 81 (3) ◽  
pp. 414-437
Author(s):  
Ellen McGrory ◽  
Tiernan Henry ◽  
Peter Conroy ◽  
Liam Morrison

AbstractThe presence of elevated arsenic concentrations (≥ 10 µg L−1) in groundwaters has been widely reported in areas of South-East Asia with recent studies showing its detection in fractured bedrock aquifers is occurring mainly in regions of north-eastern USA. However, data within Europe remain limited; therefore, the objective of this work was to understand the geochemical mobilisation mechanism of arsenic in this geologic setting using a study site in Ireland as a case study. Physicochemical (pH, Eh, d-O2), trace metals, major ion and arsenic speciation samples were collected and analysed using a variety of field and laboratory-based techniques and evaluated using statistical analysis. Groundwaters containing elevated dissolved arsenic concentrations (up to 73.95 µg L−1) were characterised as oxic-alkali groundwaters with the co-occurrence of other oxyanions (including Mo, Se, Sb and U), low dissolved concentrations of Fe and Mn, and low Na/Ca ratios indicated that arsenic was mobilised through alkali desorption of Fe oxyhydroxides. Arsenic speciation using a solid-phase extraction methodology (n = 20) showed that the dominant species of arsenic was arsenate, with pH being a major controlling factor. The expected source of arsenic is sulphide minerals within fractures of the bedrock aquifer with transportation of arsenic and other oxyanion forming elements facilitated by secondary Fe mineral phases. However, the presence of methylarsenical compounds detected in groundwaters illustrates that microbially mediated mobilisation processes may also be (co)-occurring. This study gives insight into the geochemistry of arsenic mobilisation that can be used to further guide research needs in this area for the protection of groundwater resources.


Author(s):  
Margaret Brocx ◽  
Vic Semeniuk ◽  
Tom J. Casadevall ◽  
Dan Tormey

Across the globe, volcanoes and volcanic terrains present one of the most complex geological systems on Earth that, depending on magma type, viscosity, and water and gas content, form a diverse range of products in terms of geomorphology, lithologic suites, structures, and stratigraphy. In broad terms, magmas, with their diagnostic composition, derive from specific tectonic settings, e.g., basalt-dominated oceanic crusts, acidic magma from continental plates, and andesitic convergent-plate margins. In addition to magma composition and volcanic rock types, there is a wide range of volcanic products, manifest at all scales, dependent on how magma interacts with the Earth’s surface, varying, for instance, from lava flows such as vesicular lava beds and flow-banded to flow-laminated lava beds, to breccias, tephra (ejecta) deposits, and bombs, amongst others, each commonly with their diagnostic small-scale lithological/structural features. This wealth of rock types, stratigraphy, and structures linked to geologic setting, potentially has geoheritage significance, and we provide here methods tailored for volcanoes and volcanic rocks of identifying, classifying and evaluating the complex and heterogeneous nature of volcanoes so that the full complement of their geology for a given region can be appreciated and incorporated into thematic geoparks, Nature Reserves and protected areas. For sites of geoheritage significance, we present (1) a globally-applicable Geoheritage Tool-kit to systematically identify volcanic geoheritage sites, (2) a technique to classify/categorise geoheritage sites, and (3) a semi-quantitative method to evaluate the geoheritage significance of volcanic sites.


2021 ◽  
Author(s):  
Wyatt Bain ◽  
Matthew Steele-MacInnis ◽  
et al.

Additional details on the geologic setting, analytical methods and results, Figures S1–S6, and Tables S1 and S2.<br>


2021 ◽  
Author(s):  
Wyatt Bain ◽  
Matthew Steele-MacInnis ◽  
et al.

Additional details on the geologic setting, analytical methods and results, Figures S1–S6, and Tables S1 and S2.<br>


2021 ◽  
Author(s):  
Ellen McGrory ◽  
Tiernan Henry ◽  
Peter Conroy ◽  
Liam Morrison

Abstract The presence of elevated arsenic concentrations (≥10 µg L-1) in groundwaters has been widely reported in areas of south east Asia with recent studies showing its detection in fractured bedrock aquifers mainly in regions of north-eastern United States. Data within Europe remains limited; therefore, the objective of this work was to understand the geochemical mobilisation mechanism of arsenic in this geologic setting. Physiochemical (pH, Eh, d-O2), trace metals, major ion and arsenic speciation samples were collected and analysed using a variety of field and laboratory-based techniques and evaluated using statistical analysis including multivariate analysis. Elevated dissolved arsenic concentrations (up to 73.95 µg L-1) were observed in oxic-alkali groundwaters with the co-occurrence of other oxyanions (e.g. Mo, Se, Sb and U), low dissolved concentrations of Fe and Mn and low Na/Ca ratios indicating that arsenic was mobilised through alkali desorption of Fe oxyhydroxides. Arsenic speciation using a solid-phase extraction methodology (n=20) showed that the dominant species of arsenic present in groundwater was arsenate, with pH being a major controlling factor. The expected source of arsenic is sulfide minerals within fractures of the bedrock aquifer with transportation of arsenic and other oxyanion-forming elements facilitated by secondary Fe mineral phases. However, the presence of methylarsenical compounds detected in the groundwaters illustrates that microbially mediated mobilisation processes were also (co)-occurring. This study demonstrates how field speciation of arsenic can be utilised to overcome analytical limitations of conventional laboratory speciation and to facilitate in the interpretation of the environmental mobility of arsenic within groundwaters.


Sign in / Sign up

Export Citation Format

Share Document