scholarly journals Analytic modeling of transit-time device drift regions with field-dependent transport coefficients

1981 ◽  
Vol 24 (1) ◽  
pp. 37-48 ◽  
Author(s):  
P.J. McCleer ◽  
D.E. Snyder ◽  
R.O. Grondin ◽  
G.I. Haddad
1982 ◽  
Vol 28 (2) ◽  
pp. 193-214 ◽  
Author(s):  
Qiu Xiaoming ◽  
R. Balescu

In this paper we generalize the formalism developed by Balescu and Paiva-Veretennicoff, valid for any kind of weak turbulence, for the determination of all the transport coefficients of an unmagnetized turbulent plasma, to the case of a magnetized one, and suggest a technique to avoid finding the inverse of the turbulent collision operator. The implicit plasmadynamical equations of a two-fluid plasma are presented by means of plasmadynamical variables. The anomalous transport coefficients appear in their natural places in these equations. It is shown that the necessary number of transport coefficients for describing macroscopically the magnetized turbulent plasma does not exceed the number for the unmagnetized one. The typical turbulent and gyromotion terms, representing dissipative effects peculiar to the magnetized system, which contribute to the frequency-dependent transport coefficients are clearly exhibited.


1987 ◽  
Vol 40 (3) ◽  
pp. 367 ◽  
Author(s):  
Keiichi Kondo

The problem of a swarm approaching the hydrodynamic regime is studied by using the projection operator method. An evolution equation for the density and the related time-dependent transport coefficient are derived. The effects of the initial condition on the transport characteristics of a swarm are separated from the intrinsic evolution of the swarms, and the difference from the continuity equation with time-dependent transport coefficients introduced by Tagashira et al. (1977, 1978) is discussed. To illustrate this method, calculations on the relaxation model collision operator have been carried out. The results are found to agree with the analysis by Robson (1975).


Author(s):  
Ivan A. Kuznetsov ◽  
Andrey V. Kuznetsov

We develop a model for simulating prion transport in a tunneling nanotube (TNT). We simulate the situation when two cells, one of which is infected, are connected by a TNT. We consider two mechanisms of prion transport: lateral diffusion in the TNT membrane and active actin-dependent transport inside endocytic vesicles. Endocytic vesicles are propelled by myosin Va molecular motors. Since the transit time of prions through a TNT is short (several minutes), the two population model developed here assumes that there is no interchange between the two prion populations, and that partitioning between the prion populations is decided by prion loading at the TNT entrance. The split between the two prion populations at the TNT entrance is decided by the degree of loading, which indicates the portion of prions that enter a TNT in endocytic vesicles. An analytical solution describing prion concentrations and fluxes is obtained.


2012 ◽  
Vol 28 (1) ◽  
pp. 151-163 ◽  
Author(s):  
Lu Huang ◽  
Cheng-Gang Zhao ◽  
Yan Liu ◽  
Guo-Qing Cai

2006 ◽  
Vol 2006 ◽  
pp. 1-14 ◽  
Author(s):  
Eduard Feireisl ◽  
Josef Málek

We establish long-time and large-data existence of a weak solution to the problem describing three-dimensional unsteady flows of an incompressible fluid, where the viscosity and heat-conductivity coefficients vary with the temperature. The approach reposes on considering the equation for the total energy rather than the equation for the temperature. We consider the spatially periodic problem.


Sign in / Sign up

Export Citation Format

Share Document