Behavioral stabilization of host-parasite population dynamics

1992 ◽  
Vol 42 (3) ◽  
pp. 308-320 ◽  
Author(s):  
Marc Mangel ◽  
Bernard D. Roitberg
Oikos ◽  
2007 ◽  
Vol 116 (12) ◽  
pp. 2017-2026 ◽  
Author(s):  
Jonathan J. Ryder ◽  
Martin R. Miller ◽  
Andy White ◽  
Robert J. Knell ◽  
Michael Boots

Parasitology ◽  
1995 ◽  
Vol 111 (S1) ◽  
pp. S3-S14 ◽  
Author(s):  
B. T. Grenfell ◽  
F. M. D. Gulland

The study of parasite population dynamics has been one of the major developments in ecology over the last 15 years (Kennedy, 1975). The seminal articles of Crofton (1971) and Anderson & May (1978, 1979; May & Anderson, 1978, 1979) began this process by illustrating the potential role of parasites in regulating or destabilizing the dynamics of wildlife host populations. Since then, a variety of empirical and theoretical studies (reviewed by Grenfell & Dobson, 1995) have explored the role of parasites in natural populations. In parallel with these population dynamical developments, a growing interest in the evolutionary ecology of parasites has also led to a large literature, examining the evolutionary impact of parasites and the importance of host-parasite coevolution (Hamilton, 1982; May & Anderson, 1990; Lively & Apanius, 1995; Read et al. 1995; Herre, this volume).


Author(s):  
Jean Béguinot

Population dynamics within host-parasite systems in insects is governed by a series of factors, both endogenous and exogenous. Among them, five factors may be considered as major drivers: the respective inherent rates of increase of the host and of the parasite, the level of resource available to the host, the respective immigration rates of the host and of the parasite. While only the first two (the inherent rates of increase of host and parasite) are considered in the original Nicholson and Bailey model, an extended version of the model includes also the other three parameters, thus providing a broader (although still schematic) approach to the host-parasite population dynamics. A brief analysis of the respective influences of each of these five driving parameters on the main features of host-parasite dynamics is derived accordingly, based upon this extended model. Finally, specific attention is paid to the major concerns due to the cyclic outbreaks of both the host and the parasite, regarding in particular the amplitude, the periodicity and the conditions of onset of the cyclicity. Both the practical aspects of the cyclic regime and its possible adaptative significance are discussed. As a whole, this approach aims to provide some general clues for the interpretation of various features of the host-parasite dynamics, as reported from field observations.


2021 ◽  
Author(s):  
Hannelore MacDonald ◽  
Dustin Brisson

Parasite-host interactions can result in periodic population dynamics when parasites over-exploit host populations. The timing of host seasonal activity, or host phenology, determines the frequency and demographic impact of parasite-host interactions which may govern if the parasite can sufficiently over-exploit their hosts to drive population cycles. We describe a mathematical model of a monocyclic, obligate-killer parasite system with seasonal host activity to investigate the consequences of host phenology on host-parasite dynamics. The results suggest that parasites can reach the densities necessary to destabilize host dynamics and drive cycling in only some phenological scenarios, such as environments with short seasons and synchronous host emergence. Further, only parasite lineages that are sufficiently adapted to phenological scenarios with short seasons and synchronous host emergence can achieve the densities necessary to over-exploit hosts and produce population cycles. Host-parasite cycles can also generate an eco-evolutionary feedback that slows parasite adaptation to the phenological environment as rare advantageous phenotypes are driven to extinction when introduced in phases of the cycle where host populations are small and parasite populations are large. The results demonstrate that seasonal environments can drive population cycling in a restricted set of phenological patterns and provides further evidence that the rate of adaptive evolution depends on underlying ecological dynamics.


Parasitology ◽  
2019 ◽  
Vol 147 (1) ◽  
pp. 65-77 ◽  
Author(s):  
Richard C. Tinsley ◽  
Hanna Rose Vineer ◽  
Rebecca Grainger-Wood ◽  
Eric R. Morgan

AbstractThe almost universally-occurring aggregated distributions of helminth burdens in host populations have major significance for parasite population ecology and evolutionary biology, but the mechanisms generating heterogeneity remain poorly understood. For the direct life cycle monogenean Discocotyle sagittata infecting rainbow trout, Oncorhynchus mykiss, variables potentially influencing aggregation can be analysed individually. This study was based at a fish farm where every host individual becomes infected by D. sagittata during each annual transmission period. Worm burdens were examined in one trout population maintained in isolation for 9 years, exposed to self-contained transmission. After this year-on-year recruitment, prevalence was 100% with intensities 10–2628, mean 576, worms per host. Parasite distribution, amongst hosts with the same age and environmental experience, was highly aggregated with variance to mean ratio 834 and negative binomial parameter, k, 0.64. The most heavily infected 20% of fish carried around 80% of the total adult parasite population. Aggregation develops within the first weeks post-infection; hosts typically carried intensities of successive age-specific cohorts that were consistent for that individual, such that heavily-infected individuals carried high numbers of all parasite age classes. Results suggest that host factors alone, operating post-infection, are sufficient to generate strongly overdispersed parasite distributions, rather than heterogeneity in exposure and initial invasion.


Sign in / Sign up

Export Citation Format

Share Document