host parasite interactions
Recently Published Documents


TOTAL DOCUMENTS

669
(FIVE YEARS 129)

H-INDEX

59
(FIVE YEARS 7)

Pathogens ◽  
2022 ◽  
Vol 11 (1) ◽  
pp. 99
Author(s):  
Stephane Delbecq

Human babesiosis results from a combination of tick tropism for humans, susceptibility of a host to sustain Babesia development, and contact with infected ticks. Climate modifications and increasing diagnostics have led to an expanded number of Babesia species responsible for human babesiosis, although, to date, most cases have been attributed to B. microti and B. divergens. These two species have been extensively studied, and in this review, we mostly focus on the antigens involved in host–parasite interactions. We present features of the major antigens, so-called Bd37 in B. divergens and BmSA1/GPI12 in B. microti, and highlight the roles of these antigens in both host cell invasion and immune response. A comparison of these antigens with the major antigens found in some other Apicomplexa species emphasizes the importance of glycosylphosphatidylinositol-anchored proteins in host–parasite relationships. GPI-anchor cleavage, which is a property of such antigens, leads to soluble and membrane-bound forms of these proteins, with potentially differential recognition by the host immune system. This mechanism is discussed as the structural basis for the protein-embedded immune escape mechanism. In conclusion, the potential consequences of such a mechanism on the management of both human and animal babesiosis is examined.


BIOCELL ◽  
2022 ◽  
Vol 46 (3) ◽  
pp. 633-638
Author(s):  
RAFAEL SCAF DE MOLON ◽  
ERICA DORIGATTI DE AVILA ◽  
JONI AUGUSTO CIRELLI ◽  
JOAO PAULO STEFFENS

2021 ◽  
Author(s):  
Felicity K Hunter ◽  
Thomas D Butler ◽  
Julie E Gibbs

Animals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 3490
Author(s):  
Carolina Romeiro Fernandes Chagas ◽  
Rasa Binkienė ◽  
Gediminas Valkiūnas

Avian blood parasites are remarkably diverse and frequently occur in co-infections, which predominate in wildlife. This makes wildlife pathogen research challenging, particularly if they belong to closely related groups, resulting in diagnostic problems and poor knowledge about such infections as well as the patterns of their co-occurrence and interactions. This is particularly true due to the periodicity (circadian rhythms) of parasitemia, which means that different parasitemia and parasite stages might be found throughout the day. We analysed blood samples from a Eurasian blackbird (Turdus merula) and a Song thrush (Turdus philomelos). This study aimed to describe a new avian Lankesterella species and molecularly characterize and redescribe Splendidofilaria mavis, a common avian filarioid nematode. Additionally, it was possible to investigate the circadian rhythms of the avian blood parasites belonging to Plasmodium, Haemoproteus, Leucocytozoon, and Trypanosoma, which occurred in co-infection in the same avian host individuals. Different circadian rhythms were seen in different parasites, with Plasmodium sp. peaks occurring at midday, Leucocytozoon spp. peaks mainly during the evening and night, and Trypanosoma spp. and microfilariae peaks at midnight. No periodicity was seen in Haemoproteus and Lankesterella species infections. The time of parasitemia peaks most likely coincides with the time of vectors’ activity, and this should be beneficial for transmission. Knowledge about the circadian rhythms is needed for better understanding patterns in host-parasite interactions and disease transmission.


2021 ◽  
Vol 58 (4) ◽  
pp. 394-399
Author(s):  
C. Stiles ◽  
M. Bujanić ◽  
F. Martinković ◽  
I.-C. Šoštarić Zuckermann ◽  
D. Konjević

Summary A wild male mouflon (Ovis musimon) was shot due to the observed weakness. Necropsy revealed consolidated lungs and traces of black pigment and fibrin on the liver. On the cut surface, a juvenile fl uke was found in the lungs, while traces of destroyed fl ukes’ migratory channels were found in the liver. F. magna infection in both, wild and domestic ruminants, causes three types of species-specific host-parasite interactions; definitive, dead-end and aberrant. mouflon are classifi ed as aberrant hosts and here we report unsuccessful migration of a juvenile fl uke that led to a severe pneumonia.


2021 ◽  
Vol 17 (12) ◽  
Author(s):  
Shannon W. Kaiser ◽  
Matthew J. Greenlees ◽  
Richard Shine

The frequency and severity of wildfires are increasing due to anthropogenic modifications to habitats and to climate. Post-fire landscapes may advantage invasive species via multiple mechanisms, including changes to host–parasite interactions. We surveyed the incidence of endoparasitic lungworms ( Rhabdias pseudosphaerocephala ) in invasive cane toads ( Rhinella marina ) in near-coastal sites of eastern Australia, a year after extensive fires in this region. Both the prevalence of infection and number of worms in infected toads increased with toad body size in unburned areas. By contrast, parasite load decreased with toad body size in burned areas. By killing moisture-dependent free-living lungworm larvae, the intense fires may have liberated adult cane toads from a parasite that can substantially reduce the viability of its host. Smaller toads, which are restricted to moist environments, did not receive this benefit from fires.


2021 ◽  
Vol 9 ◽  
Author(s):  
Sarah R. Hoy ◽  
Leah M. Vucetich ◽  
Rolf O. Peterson ◽  
John A. Vucetich

Climate change is expected to modify host-parasite interactions which is concerning because parasites are involved in most food-web links, and parasites have important influences on the structure, productivity and stability of communities and ecosystems. However, the impact of climate change on host–parasite interactions and any cascading effects on other ecosystem processes has received relatively little empirical attention. We assessed host-parasite dynamics for moose (Alces alces) and winter ticks (Dermacentor albipictus) in Isle Royale National Park over a 19-year period. Specifically, we monitored annual tick burdens for moose (estimated from hair loss) and assessed how it covaried with several aspects of seasonal climate, and non-climatic factors, such as moose density, predation on hosts by wolves (Canis lupus) and wolf abundance. Summer temperatures explained half the interannual variance in tick burden with tick burden being greater following hotter summers, presumably because warmer temperatures accelerate the development of tick eggs and increase egg survival. That finding is consistent with the general expectation that warmer temperatures may promote higher parasite burdens. However, summer temperatures are warming less rapidly than other seasons across most regions of North America. Therefore, tick burdens seem to be primarily associated with an aspect of climate that is currently exhibiting a lower rate of change. Tick burdens were also positively correlated with predation rate, which could be due to moose exhibiting risk-sensitive habitat selection (in years when predation risk is high) in such a manner as to increases the encounter rate with questing tick larvae in autumn. However, that positive correlation could also arise if high parasite burdens make moose more vulnerable to predators or because of some other density-dependent process (given that predation rate and moose density are highly correlated). Overall, these results provide valuable insights about interrelationships among climate, parasites, host/prey, and predators.


Author(s):  
Tamasa Araki ◽  
Jing-wen Lin ◽  
Miguel Prudêncio ◽  
Deirdre A. Cunningham ◽  
Takeshi Annoura

2021 ◽  
Author(s):  
Lei Han ◽  
Tianming Lan ◽  
Yaxian Lu ◽  
Mengchao Zhou ◽  
Haimeng Li ◽  
...  

Abstract Background The evolution of parasites is often directly affected by the host's environment. Studies on the evolution of the same parasites in different hosts are extremely attractive and highly relevant to our understanding of divergence and speciation. Methods Here we performed whole genome sequencing of Parascaris univalens from different Equus hosts (horses, zebras and donkeys). Phylogenetic and selection analysis was performed to study the divergence and adaptability of P. univalens. Results At the genetic level, multiple lines of evidence support that P. univalens were mainly separated into two clades (Horse-derived and Zebra & Donkey-derived). This divergence began at 300-1000 years ago, and we found that most of the key enzymes related to glycolysis were under strong positive selection in zebra & donkey-derived roundworms, but lipid related metabolism system was under positive selection in the horse-derived roundworms, indicating that the adaptive evolution of metabolism may drive the divergence in past few centuries. In addition, we found that some drug-related genes have a significantly higher degree of selection in different populations. Conclusions This work reports evidence that the host’s diet drives the divergence of roundworms for the first time, and also supports that divergence is a continuous and dynamic process, and continuous monitoring of the effects of differences in nutritional and drug history on rapid evolution of roundworms are conducive to further understanding host-parasite interactions.


Sign in / Sign up

Export Citation Format

Share Document