Host Interactions
Recently Published Documents





Xianghui Zhang ◽  
Margaret E. Reece ◽  
Cody B. Cockreham ◽  
Hui Sun ◽  
Baodong Wang ◽  

mBio ◽  
2021 ◽  
Li Wang ◽  
Isabel Sola ◽  
Luis Enjuanes ◽  
Sonia Zuñiga

Coronaviruses (CoVs) are emerging pathogens causing life-threatening diseases in humans. Knowledge of virus-host interactions and viral subversion mechanisms of host pathways is required for the development of effective countermeasures against CoVs.

Microbiology ◽  
2021 ◽  
Vol 167 (9) ◽  
Agustina Undabarrena ◽  
Camila F Pereira ◽  
Worarat Kruasuwan ◽  
Jonathan Parra ◽  
Nelly Sélem-Mojica ◽  

Last year ActinoBase, a Wiki-style initiative supported by the UK Microbiology Society, published a review highlighting the research of particular interest to the actinomycete community. Here, we present the second ActinoBase review showcasing selected reports published in 2020 and early 2021, integrating perspectives in the actinomycete field. Actinomycetes are well-known for their unsurpassed ability to produce specialised metabolites, of which many are used as therapeutic agents with antibacterial, antifungal, or immunosuppressive activities. Much research is carried out to understand the purpose of these metabolites in the environment, either within communities or in host interactions. Moreover, many efforts have been placed in developing computational tools to handle big data, simplify experimental design, and find new biosynthetic gene cluster prioritisation strategies. Alongside, synthetic biology has provided advances in tools to elucidate the biosynthesis of these metabolites. Additionally, there are still mysteries to be uncovered in understanding the fundamentals of filamentous actinomycetes' developmental cycle and regulation of their metabolism. This review focuses on research using integrative methodologies and approaches to understand the bigger picture of actinomycete biology, covering four research areas: i) technology and methodology; ii) specialised metabolites; iii) development and regulation; and iv) ecology and host interactions.

PLoS ONE ◽  
2021 ◽  
Vol 16 (9) ◽  
pp. e0256440
Hiroyuki Abe ◽  
Akiko Kunita ◽  
Yuya Otake ◽  
Teru Kanda ◽  
Atsushi Kaneda ◽  

Epstein–Barr virus (EBV)-associated gastric carcinoma (EBVaGC) is a distinct molecular subtype of gastric cancer characterized by viral infection and cellular abnormalities, including loss of AT-rich interaction domain 1A (ARID1A) expression (lost ARID1A). To evaluate the significance of lost ARID1A in the development of EBVaGC, we performed in situ hybridization of EBV-encoded RNA (EBER) and immunohistochemistry of ARID1A in the non-neoplastic gastric mucosa and intramucosal cancer tissue of EBVaGC with in vitro infection analysis of ARID1A-knockdown and -knockout gastric cells. Screening of EBER by in situ hybridization revealed a frequency of approximately 0.2% EBER-positive epithelial cells in non-neoplastic gastric mucosa tissue samples. Six small foci of EBV-infected epithelial cells showed two types of histology: degenerated (n = 3) and metaplastic (n = 3) epithelial cells. ARID1A was lost in the former type. In intramucosal EBVaGC, there were ARID1A-lost (n = 5) and -preserved tumors (n = 7), suggesting that ARID1A-lost carcinomas are derived from ARID1A-lost precursor cells in the non-neoplastic mucosa. Lost ARID1A was also observed in non-neoplastic mucosa adjacent to an ARID1A-lost EBVaGC. In vitro experiments using siRNA knockdown and the CRISPR/Cas9-knockout system demonstrated that transient reduction or permanent loss of ARID1A expression markedly increased the efficiency of EBV infection to stomach epithelial cells. Taken together, lost ARID1A plays a role in initiating EBV-driven carcinogenesis in stomach epithelial cells, which develop to a distinct subtype of EBVaGC within the proper mucosal layer. Lost ARID1A is one of the constituents of virus–host interactions in the carcinogenesis of EBVaGC.

2021 ◽  
Vol 12 ◽  
Laura Hobbs ◽  
Leah Allen ◽  
Megan Bias ◽  
Stephanie Johnson ◽  
Hannah DeRespiris ◽  

Listeria monocytogenes is a Gram-positive, intracellular pathogen responsible for the highly fatal foodborne illness listeriosis. Establishing intracellular infections requires the coordinated expressions of a variety of virulence factors, such as the pore-forming toxin listeriolysin O (LLO), in response to various intra- and extracellular signals. For example, we previously reported that L. monocytogenes differentially modulated LLO production in response to exogenous propionate, a short chain fatty acid either used in salt form as a human food ingredient or produced endogenously by gut microbial fermentation. Therefore, propionate is likely a continuously present signal throughout the L. monocytogenes transmission and infection process. However, little is known about the role of propionate in modulating L. monocytogenes-host interactions. Here we investigated the impact of propionate treatment on L. monocytogenes intracellular infections using cell culture infection models. Propionate treatment was performed separately on L. monocytogenes or host cells before or during infections to better distinguish pathogen-versus-host responses to propionate. Intracellular CFU in RAW264.7 macrophages and plaque diameters in L-fibroblasts were measured as proxy for intracellular infection outcomes. Nitrite levels and cellular morphology were also measured to assess host responses to propionate. We found that propionate pretreatment of anaerobic, but not aerobic, L. monocytogenes significantly enhanced subsequent intracellular infections in both cell types and nitrite production by infected macrophages. Propionate treatment of uninfected macrophages significantly altered cell morphology, seen by longer cells and greater migration, and reduced nitrite concentration in activated macrophages. Treatment of macrophages with propionate prior to or during infections significantly inhibited intracellular growth of L. monocytogenes, including those pre-treated with propionate. These results showcased an opposing effect of propionate on L. monocytogenes intracellular infections and strongly support propionate as an important signaling molecule for both the pathogen and the host cell that can potentially alter the outcome of L. monocytogenes-host interactions.

Oikos ◽  
2021 ◽  
Philip M. Riekenberg ◽  
Tijs Joling ◽  
Lonneke L. IJsseldijk ◽  
Andreas M. Waser ◽  
Marcel T. J. van der Meer ◽  

David Bilder ◽  
Katy Ong ◽  
Tsai-Ching Hsi ◽  
Kavya Adiga ◽  
Jung Kim

Sign in / Sign up

Export Citation Format

Share Document