Dermal breaks: Migratory cell pathways opened in anuran tadpole skin at climactic metamorphosis

1991 ◽  
Vol 23 (3) ◽  
pp. 307-315 ◽  
Author(s):  
J-P. Lechaire ◽  
J-P. Denefle
2000 ◽  
Vol 42 (6) ◽  
pp. 571-580 ◽  
Author(s):  
Rie Utoh ◽  
Kinji Asahina ◽  
Kenichi Suzuki ◽  
Kaori Kotani ◽  
Masanobu Obara ◽  
...  

2010 ◽  
Vol 24 (S1) ◽  
Author(s):  
Jennifer A. Johnson ◽  
E. Eileen Gardner ◽  
Jaishri Menon

1995 ◽  
Vol 269 (5) ◽  
pp. C1326-C1331 ◽  
Author(s):  
M. Takada ◽  
H. Yai ◽  
K. Takayama-Arita

Active Na+ transport differentiates in larval bullfrog skin cultured with corticoids. After 2 wk in culture, the epidermis became positive against human blood group antigen A, the marker for the adult-type cells of the epidermis, but was negative to the antibody against the acetylcholine receptor, the marker for the larval-type epidermis. Amiloride (10(-5) M) did not inhibit the differentiation of active Na+ transport. On the other hand, in skin cultured with prolactin (2 micrograms/ml), the epidermis remained negative against antigen A and positive against acetylcholine receptor, and the differentiation of active Na+ transport was inhibited. Thyroid hormone did not antagonize the inhibitory action of prolactin on this transport differentiation. Prolactin affected the basal cells of the larval epidermis and inhibited development of corticoid-induced adult features in the epidermis.


2015 ◽  
Vol 156 (42) ◽  
pp. 1683-1694
Author(s):  
Gyöngyi Kudlik ◽  
Zsolt Matula ◽  
Tamás Kovács ◽  
S. Veronika Urbán ◽  
Ferenc Uher

The neural crest is a transient, multipotent, migratory cell population that is unique to vertebrate embryos and gives rise to many derivatives, ranging from the neuronal and glial components of the peripheral nervous system to the ectomesenchymal derivatives of the craniofacial area and pigment cells in the skin. Intriguingly, the neural crest derived stem cells are not only present in the embryonic neural crest, but also in their target tissues in the fetus and adult. These postmigratory stem cells, at least partially, resemble their multipotency. Moreover, fully differentiated neural crest-derived cells such as Schwann cells and melanocytes are able to dedifferentiate into stem-like progenitors. Here the authors review current understanding of this unique plasticity and its potential application in stem cell biology as well as in regenerative medicine. Orv. Hetil., 2015, 156(42), 1683–1694.


Sign in / Sign up

Export Citation Format

Share Document