inhibitory action
Recently Published Documents


TOTAL DOCUMENTS

2361
(FIVE YEARS 134)

H-INDEX

80
(FIVE YEARS 6)

Nutrients ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 197
Author(s):  
Hameed Ullah ◽  
Amira Sayed Khan ◽  
Babar Murtaza ◽  
Aziz Hichami ◽  
Naim Akhtar Khan

Leptin, an anorectic hormone, regulates food intake, energy expenditure and body weight. We assessed the implication of tongue leptin in the modulation of oro-sensory detection of dietary fatty acids in mice. The RT-PCR analysis showed that mRNA encoding leptin and leptin receptor (Ob-Rb) was expressed in mice taste bud cells (TBC). Confocal microscopic studies showed that the lipid sensor CD36 was co-expressed with leptin in mice TBC. Silencing of leptin or Ob-Rb mRNA in tongue papillae upregulated preference for a long-chain fatty acid (LCFA), i.e., linoleic acid (LA), in a two-bottle paradigm in mice. Furthermore, tongue leptin application decreased the preference for the LCFA. These results suggest that tongue leptin exerts an inhibitory action on fatty acid preference. In isolated mice TBC, leptin decreased LCFA-induced increases in free intracellular calcium concentrations, [Ca2+]i. Leptin and LCFA induced the phosphorylation of ERK1/2 and STAT-3 and there were no additive or opposite effects of the two agents on the degree of phosphorylation. However, leptin, but not the LCFA, induced phosphoinositide-3-kinase (PI-3-K)-dependent Akt phosphorylation in TBC. Furthermore, leptin induced hyperpolarization, whereas LCFA induced depolarization in TBC. Our study demonstrates that tongue leptin exerts an inhibitory action on oro-sensory detection of a dietary fatty acid by interfering with Ca2+ signaling and membrane potential in mice TBC.


2021 ◽  
Author(s):  
Anna R Mäkelä ◽  
Hasan Uğurlu ◽  
Liina Hannula ◽  
Petja Salminen ◽  
Ravi Kant ◽  
...  

The emergence of the SARS-CoV-2 Omicron variant capable of escaping neutralizing antibodies emphasizes the need for prophylactic strategies to complement vaccination in fighting the COVID-19 pandemic. Nasal epithelium is rich in the ACE2 receptor and important for SARS-CoV-2 transmission by supporting early viral replication before seeding to the lung. Intranasal administration of SARS-CoV-2 neutralizing antibodies or antibody fragments has shown encouraging potential as a protective measure in animal models. However, there remains a need for SARS-CoV-2 blocking agents that are more economical to produce in large scale, while less vulnerable to mutational variation in the neutralization epitopes of the viral Spike glycoprotein. Here we describe TriSb92, a highly manufacturable trimeric human nephrocystin SH3 domain-derived antibody mimetic targeted against a conserved region in the receptor-binding domain of the Spike. TriSb92 potently neutralizes SARS-CoV-2 and its variants of concern, including Delta and Omicron. Intranasal administration of a modest dose of TriSb92 (5 or 50 micrograms) as early as eight hours before the challenge with SARS-CoV-2 B.1.351 efficiently protected mice from infection. The target epitope of TriSb92 was defined by cryo-EM, which revealed triggering of a conformational shift in the Spike trimer rather than competition for ACE2 binding as the molecular basis of its strong inhibitory action. Our results highlight the potential of intranasal inhibitors in protecting susceptible individuals from SARS-CoV-2 infection, and describe a novel type of inhibitor that could be of use in addressing the challenge posed by the Omicron variant.


2021 ◽  
Author(s):  
Kalle Saksela ◽  
Anna Mäkelä ◽  
Hasan Ugurlu ◽  
Liina Hanula ◽  
Petja Salminen ◽  
...  

Abstract The emergence of the SARS-CoV-2 Omicron variant capable of escaping neutralizing antibodies emphasizes the need for prophylactic strategies to complement vaccination in fighting the COVID-19 pandemic. Nasal epithelium is rich in the ACE2 receptor and important for SARS-CoV-2 transmission by supporting early viral replication before seeding to the lung1. Intranasal administration of SARS-CoV-2 neutralizing antibodies or antibody fragments has shown encouraging potential as a protective measure in animal models2-5. However, there remains a need for SARS-CoV-2 blocking agents that are more economical to produce in large scale, while less vulnerable to mutational variation in the neutralization epitopes of the viral Spike glycoprotein. Here we describe TriSb92, a highly manufacturable trimeric human nephrocystin SH3 domain-derived antibody mimetic targeted against a conserved region in the receptor-binding domain of the Spike. TriSb92 potently neutralizes SARS-CoV-2 and its variants of concern, including Delta and Omicron. Intranasal administration of a modest dose of TriSb92 (5 or 50 micrograms) as early as eight hours before the challenge with SARS-CoV-2 B.1.351 efficiently protected mice from infection. The target epitope of TriSb92 was defined by cryo-EM, which revealed triggering of a conformational shift in the Spike trimer rather than competition for ACE2 binding as the molecular basis of its strong inhibitory action. Our results highlight the potential of intranasal inhibitors in protecting susceptible individuals from SARS-CoV-2 infection, and describe a novel type of inhibitor that could be of use in addressing the challenge posed by the Omicron variant.


Author(s):  
Himanshu Bhardwaj ◽  
Gyanendra Kumar Sharma ◽  
Nitin Mittal ◽  
Harsh Bhardwaj

The indole skeleton is one of the most appealing structures with a wide scope of natural and pharmacological exercises, for example, antibacterial, antifungal, anticancer. A progression of new N-Substituted benzyidene 2- (1H-indol-2-yl)benzenamine subordinates (3a-3k) were combined by the response of 2-(o-aminophenyl)indole and fragrant aldehyde within the sight of ethanol with scarcely any drops of acidic corrosive. The response blend was observed by TLC and recrystallized from wanted dissolvable. The structures of these mixes have been affirmed by FTIR, 1HNMR, mass ghastly information, natural investigation. All the combined mixes were assessed for antibacterial, antifungal and anticancer activity.the results uncovered that 3g, 3h and 3k display progressively powerful movement against on the two microbes and parasitic species and compound 3h indicated promising inhibitory action against DLA cells which is cancer-causing.


2021 ◽  
Vol 8 (03) ◽  
pp. e143-e152
Author(s):  
Antonia Carolina Melo Monteiro ◽  
Aminata Doucoure Drame ◽  
Francisca Melo Nascimento ◽  
Ana Luisa Miranda-Vilela ◽  
Alexandre Vasconcelos Lima ◽  
...  

Abstract Aspergillus fumigatus is the main etiological agent of aspergillosis. Considering azole antifungal drug resistance in A. fumigatus, which compromises treatment, new alternatives are needed. Among them, essential oils (EOs) can be an alternative treatment, having shown positive results in inhibiting phytopathogenic fungi in vitro. We aimed to determine the in vitro antifungal activity of Origanum vulgare L. subsp. hirtum (Link) (oregano) and Rosmarinus officinalis L. (rosemary) EOs alone and in association (O. vulgare+R. officinalis) against A. fumigatus. EOs were analyzed by gas chromatography (GC-FID and GC/MS systems), and analyses showed that the major components of O. vulgare EO were carvacrol (67.8%), p-cymene (14.8%), and thymol (3.9%); for R. officinalis, they were the monoterpenes 1,8-cineole (49.1%), camphor (18.1%) and α-pinene (8.1). For biological assays, five EO concentrations, 0.2; 0.4; 0.6; 0.8 and 1.0%, were used in disk diffusion and agar dilution tests for 21 days. In disk diffusion, O. vulgare EO alone and in association (O. vulgare+R. officinalis) showed fungicidal activity at all concentrations. In agar dilution, inhibitory action was demonstrated from 0.6% for O. vulgare EO and in association (O. vulgare+R. officinalis). R. officinalis EO at 1.0% showed no fungal growth, determining the minimum inhibitory concentration (MIC). The present study demonstrated inhibitory actions of O. vulgare and R. officinalis EOs in A. fumigatus. GC analyses corroborated the literature regarding their antibacterial and antifungal effects. However, further in vitro and in vivo studies are needed to evaluate EOs as alternative antifungals for treating aspergillosis.


2021 ◽  
Vol 14 (11) ◽  
pp. 1136
Author(s):  
Tahereh Jamshidnejad-Tosaramandani ◽  
Soheila Kashanian ◽  
Mahsa Babaei ◽  
Mohamed H. Al-Sabri ◽  
Helgi B. Schiöth

There is no definite cure for Alzheimer’s disease (AD) due to its multifactorial origin. Drugs that inhibit acetylcholinesterase (AChE), such as rivastigmine, are promising symptomatic treatments for AD. Emerging evidence suggests that insulin therapy can hinder several aspects of AD pathology. Insulin has been shown to modify the activity of AChE, but it is still unknown how insulin and AChE interact. Combination therapy, which targets several features of the disease based on existing medications, can provide a worthy therapy option for AD management. However, to date, no studies have examined the potential interaction of insulin with AChE and/or rivastigmine in vitro. In the present study, we employed the Response Surface Methodology (RSM) as an in vitro assessment to investigate the effect of insulin on both AChE activity and rivastigmine inhibitory action using a common spectrophotometric assay for cholinesterase activity, Ellman’s method. Our results showed that insulin, even at high concentrations, has an insignificant effect on both the activity of AChE and rivastigmine’s inhibitory action. The variance of our data is near zero, which means that the dispersion is negligible. However, to improve our understanding of the possible interaction of insulin and rivastigmine, or its target AChE, more in silico modelling and in vivo studies are needed.


Author(s):  
Joyce dos Reis Lima ◽  
Maria Kueirislene Amancio Ferreira ◽  
Ketelly Vanessa Barros Sales ◽  
Antônio Wlisses da Silva ◽  
Emanuelle Machado Marinho ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document