Purification from black widow spider venom of a protein factor causing the depletion of synaptic vesicles at neuromuscular junctions

Toxicon ◽  
1977 ◽  
Vol 15 (1) ◽  
pp. 96
Author(s):  
S.B.
1979 ◽  
Vol 81 (1) ◽  
pp. 163-177 ◽  
Author(s):  
B Ceccarelli ◽  
F Grohovaz ◽  
W P Hurlbut

Black widow spider venom (BWSV) was applied to frog nerve-muscle preparations bathed in Ca2+-containing, or Ca2+-free, solutions and the neuromuscular junctions were studied by the freeze-fracture technique. When BWSV was applied for short periods (10-15 min) in the presence of Ca2+, numerous dimples (P face) or protuberances (E face) appeared on the presynaptive membrane and approximately 86% were located immediately adjacent to the double rows of large intramembrane particles that line the active zones. When BWSV was applied for 1 h in the presence of Ca2+, the nerve terminals were depleted of vesicles, few dimples or protuberances were seen, and the active zones were almost completely disorganized. The P face of the presynaptic membrane still contained large intramembrane particles. When muscles were soaked for 2-3 h in Ca2+-free solutions, the active zones became disorganized, and isolated remnants of the double rows of particles were found scattered over the P face of the presynaptic membrane. When BWSV was applied to these preparations, dimples or protuberances occurred almost exclusively alongside disorganized active zones or alongside dispersed fragments of the active zones. The loss of synaptic vesicles from terminals treated with BWSV probably occurs because BWSV interferes with the endocytosis of vesicle membrane. Therefore, we assume that the dimples or protuberances seen on these terminals identify the sites of exocytosis, and we conclude that exocytosis can occur mostly in the immediate vicinity of the large intramembrane particles. Extracellular Ca2+ seems to be required to maintain the grouping of the large particles into double rows at the active zones, but is not required for these particles to specify the sites of exocytosis.


1979 ◽  
Vol 73 (2) ◽  
pp. 245-263 ◽  
Author(s):  
A Gorio ◽  
A Mauro

Black widow spider venom (BWSV) stimulates transmitter release and depletes synaptic vesicles from muscles bathed in a sodium free medium containing 1 mM EGTA. However, frog neuromuscular junctions treated with BWSV in glucosamine Ringer's and post-treated with antivenin recover normal function. This suggests that probably the permanent block of neuromuscular transmission is due to changes in permeability of the nerve ending plasma membrane to cations such as Na+. When BWSV is applied in a medium lacking divalent cations and containing 1 mM EGTA, in most of the cases no effect is observed. We found that this inhibition can be overcome in three ways: (a) by adding divalent cations to the medium; (b) by increasing the tonicity of the medium with sucrose; (c) by raising the temperature of the medium. These results suggest that the lack of divalent cations influences the membrane fluidity. Moreover, in view of the report by Yahara and Kakimoto-Sameshima (1977. Proc. Natl. Acad. Sci. U.S.A. 74:4511--4515) that hypertonic media induce capping of surface receptors in lymphocytes and thymocytes, we think that these data further support the hypothesis that BWSV stimulates release by a dual mode of action; namely, it increases the nerve ending permeability to cations and also stimulates release directly via a process of redistribution of membrane components, a process which may also inhibit vesicle recycling.


1972 ◽  
Vol 52 (1) ◽  
pp. 1-14 ◽  
Author(s):  
Allen W. Clark ◽  
William P. Hurlbut ◽  
Alexander Mauro

Application of black widow spider venom to the neuromuscular junction of the frog causes an increase in the frequency of miniature end-plate potentials (min.e.p.p.) and a reduction in the number of synaptic vesicles in the nerve terminal. Shortly after the increase in min.e.p.p. frequency, the presynaptic membrane of the nerve terminal has either infolded or "lifted." Examination of these infoldings or lifts reveals synaptic vesicles in various stages of fusion with the presynaptic membrane. After the supply of synaptic vesicles has been exhausted, the presynaptic membrane returns to its original position directly opposite the end-plate membrane. The terminal contains all of its usual components with the exception of the synaptic vesicles. The only other alteration of the structures making up the neuromuscular junction occurs in the axon leading to the terminal. Instead of completely filling out its Schwann sheath, the axon has pulled away and its axoplasm appears to be denser than the control. The relation of these events to the vesicle hypothesis is discussed.


1986 ◽  
Vol 88 (1) ◽  
pp. 59-81 ◽  
Author(s):  
R Fesce ◽  
J R Segal ◽  
B Ceccarelli ◽  
W P Hurlbut

A modification of the classical procedure of fluctuation analysis is used to measure the waveform, w(t), mean amplitude, (h), and mean rate of occurrence, (r), of miniature endplate potentials (MEPPs) at frog cutaneous pectoris neuromuscular junctions treated with black widow spider venom (BWSV). MEPP parameters are determined from the power spectrum of the fluctuating potential and the second (variance), third (skew), and fourth semi-invariants (cumulants) of high-pass-filtered records of the potential. The method gives valid results even when the mean potential undergoes slow changes unrelated to MEPPs and when the MEPP rate is not stationary; it detects changes in the distribution of MEPP amplitudes and corrects for the nonlinear summation of MEPPs. The effects of Ca2+ on BWSV-induced secretion are studied in detail. When Ca2+ is absent, the power spectrum of the fluctuations is shaped like the spectrum of w(t) and secretion is quasi-stationary; (r) rises smoothly to peak values of approximately 1,500/s and then quickly subsides to levels near 10/s. Many relatively small and some "giant" MEPPs occur at the ends of the experiments, and the distribution of MEPP amplitudes broadens. When the effects of this broadening are corrected for, we find that approximately 0.7 X 10(6) MEPPs occurred during the 30 min of intense secretion. Since BWSV depletes nerve terminals of their quanta of transmitter and their synaptic vesicles, this figure is an upper limit for the quantal store in a resting terminal. When Ca2+ is present, the noise spectrum deviates from the spectrum of w(t) and secretion is nonstationary; (r) rises to similar peak values but is sustained at levels near 400/s for up to an hour and at least 1.5 X 10(6) quanta are secreted within this period. Thus, the quantal store must have turned over at least twice under this condition. Data previously obtained at junctions treated with La3+ are corrected for nonlinear summation and for the distribution of MEPP amplitudes. The two corrections roughly compensate each other, and the corrected results confirm the previous conclusion that the number of quanta secreted from La3+-treated terminals during 1 h is not strongly dependent upon the extracellular concentration of Ca2+; approximately 2 X 10(6) quanta are released even when Ca2+ is absent.


1972 ◽  
Vol 60 (6) ◽  
pp. 650-664 ◽  
Author(s):  
Nobufumi Kawai ◽  
Alexander Mauro ◽  
Harry Grundfest

The effect of black widow spider venom (BWSV) on the junctions of the lobster nerve-muscle preparation was studied by intracellular recordings. After application of BWSV both excitatory and inhibitory postsynaptic potentials (epsp and ipsp) were augmented then suppressed. The frequency of miniature potentials was markedly increased by BWSV. Summated postsynaptic conductance changes appeared to be responsible for the membrane depolarization and the decrease in effective membrane resistance seen in the early stages of the venom action. In the later stages both excitatory and inhibitory "giant miniature potentials" were evoked. No discernible changes were found in the reversal potential of the epsp and ipsp and in the sensitivity of the postsynaptic membrane. The results indicate that BWSV has a presynaptic action at crustacean neuromuscular junctions.


Sign in / Sign up

Export Citation Format

Share Document