widow spider
Recently Published Documents


TOTAL DOCUMENTS

406
(FIVE YEARS 49)

H-INDEX

40
(FIVE YEARS 2)

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Minghao Chen ◽  
Daniel Blum ◽  
Lena Engelhard ◽  
Stefan Raunser ◽  
Richard Wagner ◽  
...  

AbstractLatrotoxins (LaTXs) are presynaptic pore-forming neurotoxins found in the venom of Latrodectus spiders. The venom contains a toxic cocktail of seven LaTXs, with one of them targeting vertebrates (α-latrotoxin (α-LTX)), five specialized on insects (α, β, γ, δ, ε- latroinsectotoxins (LITs), and one on crustaceans (α-latrocrustatoxin (α-LCT)). LaTXs bind to specific receptors on the surface of neuronal cells, inducing the release of neurotransmitters either by directly stimulating exocytosis or by forming Ca2+-conductive tetrameric pores in the membrane. Despite extensive studies in the past decades, a high-resolution structure of a LaTX is not yet available and the precise mechanism of LaTX action remains unclear. Here, we report cryoEM structures of the α-LCT monomer and the δ-LIT dimer. The structures reveal that LaTXs are organized in four domains. A C-terminal domain of ankyrin-like repeats shields a central membrane insertion domain of six parallel α-helices. Both domains are flexibly linked via an N-terminal α-helical domain and a small β-sheet domain. A comparison between the structures suggests that oligomerization involves major conformational changes in LaTXs with longer C-terminal domains. Based on our data we propose a cyclic mechanism of oligomerization, taking place prior membrane insertion. Both recombinant α-LCT and δ-LIT form channels in artificial membrane bilayers, that are stabilized by Ca2+ ions and allow calcium flux at negative membrane potentials. Our comparative analysis between α-LCT and δ-LIT provides first crucial insights towards understanding the molecular mechanism of the LaTX family.


Author(s):  
Sebastian L Torres ◽  
Abraham Landeros ◽  
Eleanor J Penhallegon ◽  
Kaleth Salazar ◽  
Lindsay M Porter

Abstract Widow spiders are widely known for their potent venom toxins that make them among the few spiders of medical concern. The latrotoxins are the most well-studied widow toxins and include both the vertebrate-specific latrotoxins and the insect-specific latroinsectotoxins (LITs). Previous studies have shown that toxins are not limited to expression in the venom glands of adult spiders; however, gaps exist in latrotoxin screening across all life stages for brown widows, Latrodectus geometricus and southern black widows, Latrodectus mactans. In this study, we screened male and female venom gland, cephalothorax, and abdomen tissues, spiderling cephalothorax and abdomen tissues, and eggs of both L. geometricus and L. mactans, for the presence of three latrotoxins: α-latrotoxin (α-LTX), and α- and δ-latroinsectotoxins (α/δ-LITs). Widows were locally collected. Extracted RNA was used to prepare cDNA that was analyzed by PCR for the presence or absence of latrotoxin expression. Results show that expression profiles between the two species are very similar but not identical. Expression of α-LTX was found in all life stages in all tissues examined for both species. For both species, no LIT expression was detected in eggs and variable patterns of α-LIT expression were detected in spiderlings and adults. Notably, δ-LIT could only be detected in females for both species. Our results show that latrotoxin expression profiles differ within and between widow species. Data on their expression distribution provide further insight into the specific latrotoxins that contribute to toxicity profiles for each life stage in each species and their specific role in widow biology.


2021 ◽  
Vol 85 (3) ◽  
pp. AB185
Author(s):  
Marely Santiago Vazquez ◽  
Osward Y. Carrasquillo ◽  
Natalia M. Pelet del Toro ◽  
Francisco Colón Fontanez

Molecules ◽  
2021 ◽  
Vol 26 (16) ◽  
pp. 5088
Author(s):  
Mikayla Shanafelt ◽  
Camille Larracas ◽  
Simmone Dyrness ◽  
Ryan Hekman ◽  
Coby La Mattina-Hawkins ◽  
...  

Spider silk has outstanding mechanical properties, rivaling some of the best materials on the planet. Biochemical analyses of tubuliform silk have led to the identification of TuSp1, egg case protein 1, and egg case protein 2. TuSp1 belongs to the spidroin superfamily, containing a non-repetitive N- and C-terminal domain and internal block repeats. ECP1 and ECP2, which lack internal block repeats and sequence similarities to the highly conserved N- and C-terminal domains of spidroins, have cysteine-rich N-terminal domains. In this study, we performed an in-depth proteomic analysis of tubuliform glands, spinning dope, and egg sacs, which led to the identification of a novel molecular constituent of black widow tubuliform silk, referred to as egg case protein 3 or ECP3. Analysis of the translated ECP3 cDNA predicts a low molecular weight protein of 11.8 kDa. Real-time reverse transcription–quantitative PCR analysis performed with different silk-producing glands revealed ECP3 mRNA is predominantly expressed within tubuliform glands of spiders. Taken together, these findings reveal a novel protein that is secreted into black widow spider tubuliform silk.


2021 ◽  
pp. 1-2
Author(s):  
John P. Dunbar ◽  
Aiste Vitkauskaite ◽  
Derek T. O’Keeffe ◽  
Antoine Fort ◽  
Ronan Sulpice ◽  
...  

2021 ◽  
Author(s):  
Bryan E Kubena ◽  
Mohamad A Umar ◽  
Jerimiah D Walker ◽  
Hillary Harper

ABSTRACT Latrodectism from black widow spider (BWS) bites is rare in the United States. Latrodectism is a severe systemic manifestation of the envenomation that includes severe abdominal pain mimicking acute surgical abdomen and, in rare cases, could lead to acute myocarditis and rhabdomyolysis. The BWS typically inhabits dark, low-lying areas such as woodpiles, tree stumps, outdoor storage, outdoor furniture, outdoor toilets, and rock piles and is most active during warm weather months. Military service members often participate in field training exercises during warm weather in wooded areas littered with woodpiles and tree stumps; therefore, they are at an increased risk for bites by arachnids. We report the case of a 26-year-old active duty male soldier evacuated from field training with latrodectism and possible envenomation-induced myocarditis after a suspected BWS bite.


Sign in / Sign up

Export Citation Format

Share Document