Diffraction of plane waves at a horizontal half-plane in a compressible stratified fluid

1984 ◽  
Vol 24 (5) ◽  
pp. 165-170
Author(s):  
A.K. Shatov
1977 ◽  
Vol 55 (4) ◽  
pp. 305-324 ◽  
Author(s):  
S. Przeździecki ◽  
R. A. Hurd

An exact, closed-form solution is found for the following half-plane diffraction problem: (I) The medium surrounding the half-plane is both electrically and magnetically gyrotropic. (II) The scattering half-plane is perfectly conducting and oriented perpendicular to the distinguished axis of the medium. (III) The incident electromagnetic plane wave propagates in a direction normal to the edge of the half-plane.The formulation of the problem leads to a coupled pair of Wiener–Hopf equations. These had previously been thought insoluble by quadratures, but yield to a newly discovered technique : the Wiener–Hopf–Hilbert method. A basic feature of the problem is its two-mode character i.e. plane waves of both modes are necessary for the spectral representation of the solution. The coupling of these modes is purely due to edge diffraction, there being no reflection coupling. The solution obtained is simple in that the Fourier transforms of the field components are just algebraic functions. Properties of the solution are investigated in some special cases.


1964 ◽  
Vol 42 (8) ◽  
pp. 1455-1468 ◽  
Author(s):  
E. V. Jull

The diffraction of a plane electromagnetic wave by a perfectly conducting half-plane in an anisotropic plasma is considered. The plasma is characterized by a permittivity tensor and the wave is assumed to propagate in a direction normal to the magnetostatic field and the diffracting edge, but its angle of incidence is otherwise arbitrary. Only the H-polarized wave of the incident field, which has a single magnetic field component parallel to the edge, is affected by the anisotropy and the analysis is restricted accordingly. Representing the scattered field as an angular spectrum of plane waves leads to dual integral equations from which an expression for the scattered field is obtained. The total field is then reduced to Fresnel integrals and its far-field behavior is investigated. Agreement with Seshadri and Rajagopal's result for a wave normally incident on the conductor, which was obtained by using the Wiener–Hopf technique, is found. The differences between isotropic and anisotropic solutions to this problem, which arise from the differing boundary conditions on the tangential magnetic field, are examined.


2008 ◽  
Vol 597 ◽  
pp. 283-303 ◽  
Author(s):  
STÉPHANE LE DIZÈS

The inviscid waves propagating on a Lamb–Oseen vortex in a rotating medium for an unstratified fluid and for a strongly stratified fluid are analysed using numerical and asymptotic approaches. By a local Lagrangian description, we first provide the characteristics of the local plane waves (inertia–gravity waves) as well as the local growth rate associated with the centrifugal instability when the vortex is unstable. A global WKBJ approach is then used to determine the frequencies of neutral core modes and neutral ring modes. We show that these global Kelvin modes only exist in restricted domains of the parameters. The consequences of these domain limitations for the occurrence of the elliptic instability are discussed. We argue that in an unstratified fluid the elliptic instability should be active in a small range of the Coriolis parameter which could not have been predicted from a local approach. The wavenumbers of the sinuous modes of the elliptic instability are provided as a function of the Coriolis parameter for both an unstratified fluid and a strongly stratified fluid.


Sign in / Sign up

Export Citation Format

Share Document