The rate of convergence of projection methods in the eigenvalue problem for equations of special form

Author(s):  
A.G. Zarubin
2015 ◽  
Vol 712 ◽  
pp. 43-48
Author(s):  
Rafał Palej ◽  
Artur Krowiak ◽  
Renata Filipowska

The work presents a new approach to the power method serving the purpose of solving the eigenvalue problem of a matrix. Instead of calculating the eigenvector corresponding to the dominant eigenvalue from the formula , the idempotent matrix B associated with the given matrix A is calculated from the formula , where m stands for the method’s rate of convergence. The scaling coefficient ki is determined by the quotient of any norms of matrices Bi and or by the reciprocal of the Frobenius norm of matrix Bi. In the presented approach the condition for completing calculations has the form. Once the calculations are completed, the columns of matrix B are vectors parallel to the eigenvector corresponding to the dominant eigenvalue, which is calculated from the Rayleigh quotient. The new approach eliminates the necessity to use a starting vector, increases the rate of convergence and shortens the calculation time when compared to the classic method.


2008 ◽  
Vol 13 (2) ◽  
pp. 171-182 ◽  
Author(s):  
Marta M. Betcke ◽  
Heinrich Voss

For nonlinear eigenvalue problems T(λ)x = 0 satisfying a minmax characterization of its eigenvalues iterative projection methods combined with safeguarded iteration are suitable for computing all eigenvalues in a given interval. Such methods hit their limitations if a large number of eigenvalues is required. In this paper we discuss restart procedures which are able to cope with this problem, and we evaluate them for a rational eigenvalue problem governing vibrations of a fluid‐solid structure.


Sign in / Sign up

Export Citation Format

Share Document